首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数F(χ)=∫χχ+2πf(t)dt,其中f(t)=(1+sin2t)cos2t,则F(χ)
函数F(χ)=∫χχ+2πf(t)dt,其中f(t)=(1+sin2t)cos2t,则F(χ)
admin
2016-10-21
55
问题
函数F(χ)=∫
χ
χ+2π
f(t)dt,其中f(t)=
(1+sin
2
t)cos2t,则F(χ)
选项
A、为正数.
B、为负数.
C、恒为零.
D、不是常数.
答案
B
解析
由于被积函数连续且以π为周期(2π也是周期),故F(χ)=F(0)=∫
0
2π
f(t)dt=2∫
0
π
f(t)dt,即F(χ)为常数.由于被积函数是变号的,为确定积分值的符号,可通过分部积分转化为被积函数定号的情形,即
2∫
0
π
f(t)dt=∫
0
π
(1+sin
2
t)d(sin2t)=∫
0
π
-sin2t
(2+sin
2
t)dt<0,
故应选B.
转载请注明原文地址:https://kaotiyun.com/show/cHt4777K
0
考研数学二
相关试题推荐
已知函数求函数图形的渐近线。
若f(x)的导函数为sinx,则f(x)的一个原函数是________。
设当x∈[2,4]时,有不等式ax+b≥lnx,其中a,b为常数,试求使得积分I=∫24(ax+b-lnx)dx取得最小值的a和b。
设函数f(x)在[0,1]上具有二阶导数f"(x)≤0,试证明:∫01f(x2)dx≤
某立体上、下底面平行,且与x轴垂直,若平行于底面的截面面积A(x)是x的不高于二次的多项式,试证该立体体积为V=(B1+4M+B2),其中h为立体的高,B1,B2分别是底面面积,M为中截面面积。
设函数f(u)在(0,+∞)内具有二阶导数,且z=满足等式若f(1)=0,f’(1)=1,求函数f(u)的表达式。
设函数S(x)=∫0x|cost|dt当n为正整数时,且nπ≤x<(n+1)π时,证明:2n≤S(x)<2(n+1).
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解为________。
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
已知f〞(x)<0,f(0)==0,试证:对任意的两正数x1和x2,恒有f(x1+x2)<f(x1)+f(x2)成立.
随机试题
“精之藏制虽在肾。而精之主宰则在心”此论是何书提出
风湿性心瓣膜病并发感染性心内膜炎时,最支持感染性心内膜炎诊断的是
对放射线不敏感的肿瘤是
丁以其管理才能入伙是否合法?丁在合伙企业之外另建新的运输企业是否合法?
同一建筑物内应采用统一规格的消火栓、水枪和水带,其中,水带长度不应超过()m。地表水作为室外消防水源时,消防车取水高度不符合要求的有()。
张某为某单位的会计人员,平时工作努力,钻研业务、积极学习提供合理化建议,这体现了张某具有()的职业道德。
已实施检验检疫的出境货物,由于客观原因不能履行合同的,报检人应向检验检疫机构申请办理撤销报检手续。()
下列各项中,属于侵犯注册商标专用权的行为的是()。
教育实践活动开展以来,很多地方和部门认真听取群众意见、仔细查摆问题。但也有一些地方、一些领导干部__________,绕开“四风"听意见,避开重点谈不足,或者不把自己摆进去,说自己轻轻带过,谈别人滔滔不绝,或者找的都是无关痛痒的“小问题”,________
下列选项中,属于继受取得所有权的方式的是()。
最新回复
(
0
)