首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组有非零解,而且矩阵是正定矩阵. 求当xTx=2时,XTAX的最大值,其中X=(x1,x2,x3)T为3维实向量.
已知线性方程组有非零解,而且矩阵是正定矩阵. 求当xTx=2时,XTAX的最大值,其中X=(x1,x2,x3)T为3维实向量.
admin
2018-07-27
103
问题
已知线性方程组
有非零解,而且矩阵
是正定矩阵.
求当x
T
x=2时,X
T
AX的最大值,其中X=(x
1
,x
2
,x
3
)
T
为3维实向量.
选项
答案
A的最大特征值为10,设对应的单位特征向量为髻(即Aξ=10ξ,且ξ
T
ξ=1).对二次型X
T
AX,存在正交变换X=PY化其为标准形:X
T
AX=λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
≤10(y
1
2
+y
2
2
+y
3
2
),当X
T
X=Y
T
Y=y
1
2
+y
2
2
+y
3
2
=2时,有X
T
AX≤10×3=20,又X
0
=[*]ξ满足X
0
T
X
0
=2,则X
0
T
AX
0
=([*]ξ)=2ξ
T
(Aξ)=2ξ
T
(10ξ)=20(ξ
T
ξ)=20,综上可知[*]X
T
AX=20.
解析
转载请注明原文地址:https://kaotiyun.com/show/cXW4777K
0
考研数学三
相关试题推荐
假设从单位正方形区域D={(x,y)|0≤x≤1,0≤y≤1}中随机地选取一点,以该点的两个坐标x与y作为直角三角形的两条直角边,求该直角三角形的面积大于的概率p.
设z=z(x,y)是由方程F(xy,y+z,xz)=0所确定的隐函数,且F具有一阶连续偏导数,求
已知n阶行列式|A|=,则|A|的第k行代数余子式的和Ak1+Ak2+…+Akn=______.
已知A,A-E都是n阶实对称正定矩阵,证明E-A-1是正定矩阵.
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式;(Ⅱ
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是A属于λ=6的特征向量,求矩阵A.
设A是3阶实对称矩阵,特征值是0,1,2.如果λ=0与λ=1的特征向量分别是α1=(1,2,1)T与α2=(1,-1,1)T,则λ=2的特征向量是_______.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|一A1一2A2,2A2+3A3,一3A3+2A2|=________.
设三阶方阵A与B相似,且|2E+A|=0。已知λ1=1,λ2=—1是方阵B的两个特征值,则|A+2AB|=________。
随机试题
行车中机动车发生爆胎后,驾驶人可迅速使用行车制动器减速停车。
三相异步电动机安装时,应在电动机与基础之间垫衬防震物。()
A.可合并肠急性穿孔B.可合并肠大出血C.两者均有D.两者均无细菌性痢疾
在Ⅰ型变态反应中,IgE不与下述哪些细胞Fc段受体结合
关于月经,下列哪项是正确的
不得从税前列支的业务招待费金额为()。该企业2003年应纳企业所得税为()。
甲公司持有的下列各项资产中,应作为投资性房地产的是()。
公安机关权力的特点是()
有一种长着红色叶子的草,学名叫abana,在地球上极稀少。北美的人都认识一种红色叶子的草,这种草在那里很常见。从上面的事实不能得出以下哪项结论?
WheretoGetHealthierin2018A)Fromhotelsandcruisestoairports,airlines,safaris(游猎)andgrouptours,wellnesspromi
最新回复
(
0
)