首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=[1,1,1,1]T,α2=[1,-1,2,3]T,α3=[1,1,4,9]T,α4=[1,-1,8,27]T,证明:任意一个4维列向量均可以被该向量组线性表示,且表达式唯一.
设向量组α1=[1,1,1,1]T,α2=[1,-1,2,3]T,α3=[1,1,4,9]T,α4=[1,-1,8,27]T,证明:任意一个4维列向量均可以被该向量组线性表示,且表达式唯一.
admin
2021-07-27
54
问题
设向量组α
1
=[1,1,1,1]
T
,α
2
=[1,-1,2,3]
T
,α
3
=[1,1,4,9]
T
,α
4
=[1,-1,8,27]
T
,证明:任意一个4维列向量均可以被该向量组线性表示,且表达式唯一.
选项
答案
记A=[α
1
,α
2
,α
3
,α
4
],由 [*] 知向量组α
1
,α
2
,α
3
,α
4
线性无关.设β=[a,b,c,d]
T
为任意一个4维列向量,下面证明,β可以被α
1
,α
2
,α
3
,α
4
线性表示,且表达式唯一.从秩的角度,由于矩阵|A|≠0,知向量组α
1
,α
2
,α
3
,α
4
线性无关,即有r(α
1
,α
2
,α
3
,α
4
)=4,又向量组α
1
,α
2
,α
3
,α
4
,β的向量个数大于维数,必相关,即有r(α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
)=4,故β可以被向量组α
1
,α
2
,α
3
,α
4
线性表示,且表达式唯一.
解析
转载请注明原文地址:https://kaotiyun.com/show/chy4777K
0
考研数学二
相关试题推荐
没线性方程组AX=kβ1+β2有解,其中A则k为().
n维向量组(Ⅰ)α1,α2,…,αs和(Ⅱ)β1,β2,…,βt等价的充分必要条件是
设A为m×n矩阵,B为n×m矩阵,若AB=E,则()
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是()
设f(x)=(x一a)(x一b)(x—c)(x一d),其中a,b,c,d互不相等,且f’(k)=(k一a)(k一b)(k一c),则k的值等于()
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设为正项级数,则下列结论正确的是()
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设n维列向量组α1…,αm(m<n)线性无关,则n维列向量组β1…,βm线性无关的充分必要条件是()
随机试题
青少年好发的肿瘤为()。
Farmersareallowedtogrowsmallgardensoftheirownandtheyselltheirvegetables______theblackmarket.
如果取精液检查,应在检查前至少几天内不排精。
华支睾吸虫对人的危害主要是
关于胰岛素治疗,下列不妥的是下列哪一部位不可注射胰岛素
治疗成人呼吸窘迫综合征最有效的措施为()
《中华人民共和国广告法》规定,药品、医疗器械广告不得有的内容是()
设齐次线性方程组当方程组有非零解时,k值为:
某工业企业仅生产甲产品,采用品种法计算产品成本。3月初在产品直接材料成本130万元,直接人工成本18万元,制造费用10万元。3月份发生直接材料成本80万元,直接人工成本4871元,制造费用6万元。3月末甲产品完工100件,在产品200件。月末计算完工产品成
Translatingisacomplexandfascinatingtask.Infact,A.Richardshasclaimedthatitisprobablythemostcomplextypeofeve
最新回复
(
0
)