首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=[1,1,1,1]T,α2=[1,-1,2,3]T,α3=[1,1,4,9]T,α4=[1,-1,8,27]T,证明:任意一个4维列向量均可以被该向量组线性表示,且表达式唯一.
设向量组α1=[1,1,1,1]T,α2=[1,-1,2,3]T,α3=[1,1,4,9]T,α4=[1,-1,8,27]T,证明:任意一个4维列向量均可以被该向量组线性表示,且表达式唯一.
admin
2021-07-27
39
问题
设向量组α
1
=[1,1,1,1]
T
,α
2
=[1,-1,2,3]
T
,α
3
=[1,1,4,9]
T
,α
4
=[1,-1,8,27]
T
,证明:任意一个4维列向量均可以被该向量组线性表示,且表达式唯一.
选项
答案
记A=[α
1
,α
2
,α
3
,α
4
],由 [*] 知向量组α
1
,α
2
,α
3
,α
4
线性无关.设β=[a,b,c,d]
T
为任意一个4维列向量,下面证明,β可以被α
1
,α
2
,α
3
,α
4
线性表示,且表达式唯一.从秩的角度,由于矩阵|A|≠0,知向量组α
1
,α
2
,α
3
,α
4
线性无关,即有r(α
1
,α
2
,α
3
,α
4
)=4,又向量组α
1
,α
2
,α
3
,α
4
,β的向量个数大于维数,必相关,即有r(α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
)=4,故β可以被向量组α
1
,α
2
,α
3
,α
4
线性表示,且表达式唯一.
解析
转载请注明原文地址:https://kaotiyun.com/show/chy4777K
0
考研数学二
相关试题推荐
没线性方程组AX=kβ1+β2有解,其中A则k为().
设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().
设A为m×n矩阵,B为n×m矩阵,若AB=E,则()
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,C表示任意常数,则线性方程组Ax=b的通解x为
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y22+y22
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式Iα3,α2,α1,β1+β2等于()
已知向量组α1,α2,α3,α4线性无关,则向量组()
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
随机试题
骨折的临床愈合期完成的时间为
现在单位获得会计核算软件的最主要的方式是( )。
心理学的研究对象是()
从所给的四个选项中,选择最恰当的一项填入问号处,使之呈现一定的规律性:
对棋局的记忆,象棋大师可以达到64%的准确率,但是业余新手只有18%,这体现了下列哪项对组块的重要影响?()
中国古代思想家对“天”作出了各自的解释。现将有关材料摘录如下:材料1孔子的学生子夏说:“死生有命,富贵在天”。《孟子》一书栽。“万章日;尧以天下与舜,有诸?孟子日:否。天子不能以天下与人。然而舜有天下也,敦与之?日天与之。”材料2老子说:“有物混成
已知A=可对角化,求可逆矩阵P及对角矩阵A,使P-1AP=A.
Inthe1950’saccumulatingscientificevidencelinkingcigarettesmokingandlungcancermadea(51)impact(52)thesmokingpublic.
Google,theInternetsearch-enginecompany,hasannounceditwillgivemorethantwenty-fivemilliondollarsinmoneyandinvest
Astudyofarthistorymightbeagoodwaytolearnmoreaboutaculturethanispossibletolearningeneralhistoryclasses.M
最新回复
(
0
)