首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
齐次线性方程组Ax=0的系数矩阵A4×5=(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵 A=(α1,α2,α3,α4,α5)→, 则( )
齐次线性方程组Ax=0的系数矩阵A4×5=(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵 A=(α1,α2,α3,α4,α5)→, 则( )
admin
2019-08-12
63
问题
齐次线性方程组Ax=0的系数矩阵A
4×5
=(α
1
,α
2
,α
3
,α
4
,α
5
)经初等行变换化为阶梯形矩阵
A=(α
1
,α
2
,α
3
,α
4
,α
5
)→
,
则( )
选项
A、α
1
不能由α
2
,α
3
,α
4
线性表示。
B、α
2
不能由α
3
,α
4
,α
5
线性表示。
C、α
3
不能由α
1
,α
2
,α
4
线性表示。
D、α
4
不能由α
1
,α
2
,α
3
线性表示。
答案
D
解析
对于选项A,考虑非齐次线性方程组x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
。由已知条件可知r(α
2
,α
3
,α
4
)=r(α
2
,α
3
,α
4
,α
1
)=3,所以α
1
必可由α
2
,α
3
,α
4
线性表示。
类似可判断选项B和C也不正确,只有选项D正确。
实际上,由r(α
1
,α
2
,α
3
)=2,r(α
1
,α
2
,α
3
,α
4
)=3可知,α
4
不能由α
1
,α
2
,α
3
线性表示。
转载请注明原文地址:https://kaotiyun.com/show/H5N4777K
0
考研数学二
相关试题推荐
设A,B均是三阶非零矩阵,满足AB=O,其中,则()
(04年)设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处
(10年)设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=证明:存在使得f’(ξ)+f’(η)=ξ2+η2.
(98年)设y=f(x)是区间[0,1]上任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间在区间[0,x0]上以f(x0)为高的矩形的面积等于在区间[x0,1]上以y=f(x)为曲面的曲边梯形的面积.(2)又设f(x)在(0,1)上可导,且
(15年)设D是第一象限中由曲线2xy=1,4xy=1与直线y=x,围成的平面区域,函数f(x,y)在D上连续.则f(x,y)dxdy=
(03年)计算不定积分
设f(x)有连续导数,f(0)=0,f’(0)≠0,F(x)=∫0x(x2一t2)f(t)dt且当x→0时,F’(x)与xk是同阶无穷小,则k等于
(2001年)已知矩阵且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是3阶单位阵,求X.
设A为m×n实矩阵,E为n阶单位矩阵,矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
随机试题
A、nationB、stateC、habitD、makeC
A.咳砖红色痰B.红霉素治疗有效C.两者均是D.两者均不是
女性,69岁,不慎摔倒,自觉左髋、左膝关节疼痛,不能站立、行走。查体:左下肢外旋45°,髋部无肿胀及淤血,有纵轴叩击痛,膝关节无肿胀、压痛。最应考虑诊断
A.肛周可见瘘口,有分泌物B.肛门指诊可触到变硬、增大的乳头C.排便时肛门滴血、喷射出血D.排便时肛门有间歇性疼痛E.肛门周围红肿、变硬、压痛,后期触及波动感肛乳头炎
化合物与FeCl3试剂反应呈污绿色显示可能含有
A.青霉素B.红霉素C.链霉素D.更生霉素E.利福霉素与细菌核蛋白体大亚基结合,抑制蛋白质合成
基底原状土的强度不符合要求时,应进行()。
劳动法律关系的主体是指()。
解放思想
Livetheatrelives.InEnglandineverytown,someoneisrehearsing,someonedevising,someoneperforming.Winchesterisagood
最新回复
(
0
)