首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
齐次线性方程组Ax=0的系数矩阵A4×5=(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵 A=(α1,α2,α3,α4,α5)→, 则( )
齐次线性方程组Ax=0的系数矩阵A4×5=(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵 A=(α1,α2,α3,α4,α5)→, 则( )
admin
2019-08-12
60
问题
齐次线性方程组Ax=0的系数矩阵A
4×5
=(α
1
,α
2
,α
3
,α
4
,α
5
)经初等行变换化为阶梯形矩阵
A=(α
1
,α
2
,α
3
,α
4
,α
5
)→
,
则( )
选项
A、α
1
不能由α
2
,α
3
,α
4
线性表示。
B、α
2
不能由α
3
,α
4
,α
5
线性表示。
C、α
3
不能由α
1
,α
2
,α
4
线性表示。
D、α
4
不能由α
1
,α
2
,α
3
线性表示。
答案
D
解析
对于选项A,考虑非齐次线性方程组x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
。由已知条件可知r(α
2
,α
3
,α
4
)=r(α
2
,α
3
,α
4
,α
1
)=3,所以α
1
必可由α
2
,α
3
,α
4
线性表示。
类似可判断选项B和C也不正确,只有选项D正确。
实际上,由r(α
1
,α
2
,α
3
)=2,r(α
1
,α
2
,α
3
,α
4
)=3可知,α
4
不能由α
1
,α
2
,α
3
线性表示。
转载请注明原文地址:https://kaotiyun.com/show/H5N4777K
0
考研数学二
相关试题推荐
(16年)反常积分的敛散性为
(97年)已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x一e-x是某二阶线性非齐次微分方程的三个解,求此微分方程.
(18年)设数列{xn}满足:x1>0,(n=1,2,…:).证明{xn}收敛,并求
(15年)设D是第一象限中由曲线2xy=1,4xy=1与直线y=x,围成的平面区域,函数f(x,y)在D上连续.则f(x,y)dxdy=
(93年)设常数k>0,函数f(x)=在(0,+∞)内零点个数为
设n维列向量组α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαm线性无关|P|≠0.
已知二次型f(x1,x2,x3)=x12-2x22+bx32-4x1x2+4x1x3+2ax2x3(a>0)经正交变换化成了标准形f=2y12+2y22-7y32.求a、b的值和正交矩阵P.
二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形为
计算二重积分(x2+y2)dσ,其中D是由直线x=2,y=2,x+y=1,x+y=3以及x轴与y所围成的平面区域。
设,则I,J,K的大小关系为()
随机试题
机械的可靠性设计一是机械设备要尽量少出故障,即设备的可靠性;二是出了故障要容易修复,即设备的维修性。下列关于机械可靠性的说法中,正确的是()。
似蚓蛔线虫的感染阶段是
患者,女,32岁,经产妇。近3年痛经并逐渐加重,伴经量多,需服止痛药。子宫后倾,大如妊娠8周,质硬。痛经逐渐加重的原因最可能是
发行人应当针对实际情况在招股说明书首页作“重大事项提示”,提醒投资者给予特别关注。()
根据我国《刑法》的相关规定,下列罪犯不得假释的是()。
德育的构成包括()。
有两个班的小学生要到少年宫参加活动,但只有一辆车接送,第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班的学生下车步行,车立刻返回接第二班学生上车,并直接开往少年宫,学生步行速度为每小时4千米,载学生时车速每小时40千米,空车每小
简述南京国民政府时期法律制度的主要特点。
RobertGallowayTechnolabLtd.IndustrialWayNewOrleans,LAMarch12DearMr.Galloway,Thankyouforyourinterestinjoin
Thereisnothingworsethansomeonewhoisalwayslate.Latenesscanbeacharmingeccentricity—foralittlewhile.Thetroubleis
最新回复
(
0
)