首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量a不是二阶方阵A的特征向量. 若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设二维非零向量a不是二阶方阵A的特征向量. 若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
admin
2018-04-18
60
问题
设二维非零向量a不是二阶方阵A的特征向量.
若A
2
α+Aα-6α=0,求A的特征值,讨论A可否对角化;
选项
答案
由A
2
α+Aα-6α=0,得(A
2
+A-6E)α=0, 因为α≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A-6E|=0,即 |3E+A|.|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)α=0,得 (2E-A)α=0,即Aα=2α,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)α=0,得 (3E+A)α=0,即Aα=-3α,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩阵A有两个特征值-3,2,故A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/ckk4777K
0
考研数学二
相关试题推荐
设3阶方阵Aα(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2都是3维列向量,且|A|=3,|B|=4,则|5A-2B|=________.
[*]
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在f∈(0,1),使得f(ξ)=1-ξ;
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为α.试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设矩阵A=,且秩r(A)=3.则k=__________.
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
(2011年试题,一)微分方程y’一λ2y=eλx+e-λx(λ>0)的特解形式为().
设函数.(1)求f(x)的最小值;(2)设数列{xn}满足,证明存在,并求此极限.
随机试题
急性胰腺炎血清ɑ淀粉酶活力增高,其高峰是在发病期后
物权是债权产生的前提,只有物权成立于债权之前,物权才优于一般的债权。()
招标人与中标人签订合同后()个工作日内,应当向中标人和未中标的投标人退还投标保证金。
简述税务登记的种类。
某企业于2015年12月31日购入一项固定资产,其原价为300万元,预计使用年限为5年,预计净残值为0.8万元,采用双倍余额递减法计提折旧。2016年度该项固定资产应计提的年折旧额为()万元。
甲、乙、丙、丁兄弟4人继承了一幅古画和一处房产,按照遗嘱兄弟4人的继承份额依次分别为40%、20%、20%、20%。古画由甲保管,房产已登记为4人共有,兄弟4人对共有未作出其他特殊约定。2017年4月1日,甲由于急需资金,擅自将该古画以50万元的
李木在某次考试中,课程甲和课程乙得178分,课程丙和课程丁得171分,课程乙和课程丙得174分,课程丁比课程甲高1分。问李木四门课程中哪门课程得分最高?()
一个统计总体()。
福禄贝尔在幼儿园教育实践中创制的活动玩具被称为()
新建一个窗体,其BorderStyle属性设置为FixedSingle,但运行时却没有最大化和最小化按钮,可能的原因是
最新回复
(
0
)