首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶对称矩阵的全体V对于矩阵的线性运算构成一个维线性空间.给出n阶可逆矩阵P,以A表示V中的任一元素,试证合同变换TA=PTAP,是V中的线性变换.
n阶对称矩阵的全体V对于矩阵的线性运算构成一个维线性空间.给出n阶可逆矩阵P,以A表示V中的任一元素,试证合同变换TA=PTAP,是V中的线性变换.
admin
2016-03-05
51
问题
n阶对称矩阵的全体V对于矩阵的线性运算构成一个
维线性空间.给出n阶可逆矩阵P,以A表示V中的任一元素,试证合同变换TA=P
T
AP,是V中的线性变换.
选项
答案
设A,B∈V,那么有A
T
=A,B
T
=B,则[TA]
T
=(P
T
AP)
T
=P
T
(P
T
A)
T
=P
T
AP=TA因此TA∈V.又因T(A+B)=P
T
(A+B)P=P
T
AP+P
T
BP=TA=+TA;T(kA)=P
T
(kA)P=kP
T
AP=kTA由线性变换的定义可知,合同变换T是V中的线性变换.
解析
转载请注明原文地址:https://kaotiyun.com/show/ka34777K
0
考研数学二
相关试题推荐
已知二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a>0)经正交变换x=Qy化为标准形f=y12+2y22+5y32,则a=________.
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.求正交变换x=Qy,将二次型f(x1,x2,x3)=xTAx化为标准形;
设总体X的概率密度为其中θ(θ>0)为未知参数,X1,X2,…,Xn为来自总体X的简单随机样本,则θ的最大似然估计量为________.
设A3×3是秩为1的实对称矩阵,λ1=2是A的一个特征值,其对应的特征向量为a1=(-1,1,1)T,则方程组Ax=0的基础解系为()
已知二次型f(x1,x2,x3)=xTAx的负惯性指数q=2,r(A)=3,且A2-2A-3E=0,A为实对称矩阵,则二次型在正交变换x=Qy下的标准形为()
求一条平行于x轴的直线,使它与y=sinx(0≤x≤3π)相交于四点,并使该直线与y=sinx围成的三个图形面积之和最小.
设总体X~N(μ,8),μ未知,X1,X2,…,X36是取自X的一个简单随机样本,如果以区间作为μ的置信区间,求置信度
设当x→0时,是等价的无穷小,则常数a=__________.
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
(Ⅰ)设n维向量α1,α2,α3,α4线性无关.βi=αi+tα4(i=1,2,3),证明:β1,β2,β3对任意t都线性无关;(Ⅱ)设n维向量α1,α2,α3,α4满足=0,βi=αi+iλiξ,i=1,2,3,4,问λi(i=1,2,3,4)
随机试题
在切除阑尾时发现有Meckel憩室。采用以下哪项治疗方案
慢性胃窦炎主要病因是
某护士在临床带教老师的指导下,正在进行无菌技术操作,其任务是铺无菌盘及戴消毒手套。铺好的无菌盘有效期不得超过
茯苓与薏苡仁的共同功效是
外科急诊不适合作内镜检查的是
培养学生抗诱惑力,教师可采用的措施有()。
新华社2006年3月27受权发布的《国务院关于解决农民工问题的若干意见》指出,农民工问题事关我国经济和社会发展全局,(),是需要解决的突出问题。解决农民工问题是建设中国特色社会主义的战略任务。
某商店规定每4个空啤酒瓶可以换1瓶啤酒,小明家买了24瓶啤酒,他家前后最多能喝到多少瓶啤酒?
ABC公司2012年12月31日有关资料如表2—3—2所示:2012年度公司销售收入为4000万元,所得税率30%,实现净利润100万元,分配股利60万元;公司期末股数100万股,每股面值1元。要求:回答下列互不相关的问题
社会公德最基本的要求是
最新回复
(
0
)