首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn-1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn-1正交,则( )
设α1,α2,…,αn-1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn-1正交,则( )
admin
2016-02-27
23
问题
设α
1
,α
2
,…,α
n-1
是R
n
中线性无关的向量组,β
1
,β
2
与α
1
,α
2
,…,α
n-1
正交,则( )
选项
A、α
1
,α
2
,…,α
n-1
,β
1
必线性相关。
B、α
1
,α
2
,…,α
n-1
,β
1
,β
2
必线性无关。
C、β
1
,β
2
必线性相关。
D、β
1
,β
2
必线性无关。
答案
C
解析
由n+1个n维向量必线性相关可知B选项错。
若α
i
(i=1,2,…,n-1)是第i个分量为1,其余分量全为0的向量,β
1
是第n个分量为1,其余分量全为0的向量,β
2
是第n个分量为2,其余分量全为0的向量,则α
1
,α
2
,…,α
n-1
,β
1
线性无关,β
2
=2β
1
,所以选项A和D错误。
下证C选项正确:
因α
1
,α
2
,…,α
n-1
,β
1
,β
2
必线性相关,所以存在n+1个不全为零的常数k
1
,k
2
,…,k
n-1
,l
1
,l
2
,使
k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
+l
1
β
1
+l
2
β
2
=0,
又因为α
1
,α
2
,…,α
n-1
线性无关,所以l
1
,l
2
一定不全为零,否则α
1
,α
2
,…,α
n-1
线性相关,产生矛盾。
在上式两端分别与β
1
,β
2
作内积,有
(l
1
β
1
+l
2
β
2
,β
1
)=0, ①
(l
1
β
1
+l
2
β
2
,β
2
)=0, ②
联立两式,l
1
×①+l
2
×②可得
(l
1
β
1
+l
2
β
2
,l
1
β
1
+l
2
β
2
)=0,
从而可得 l
1
β
1
+l
2
β
2
=0,
故β
1
,β
2
必线性相关。故选C。
转载请注明原文地址:https://kaotiyun.com/show/crbD777K
0
考研数学二
相关试题推荐
法约尔认为权力应当同()相等。
高层管理者最重要的管理技能是()。
由于近年来黄河水资源过度开发利用,1972年以来,黄河有21个年份出现断流;1997年,黄河断流226天,断流河段一直延伸到开封,长达704公里。一方面黄河“闹水荒”,另一方面流域内用水有增无减。专家预计,到2010年,遇到正常来水年份,黄河用水缺口将达4
研究证明,吸烟所产生的烟雾中的主要成分丙烯醛,是眼睛健康的慢性杀手,而橄榄油提取物羟基酪醇,能有效减缓这个“慢性杀手"给眼睛带来的伤害,由此得出结论,常吃橄榄油能够让吸烟者眼睛远离伤害。以下如果为真,下列哪项最能支持上述论证?()
数据挖掘(Datamining)是指从大量的存储数据中利用统计、情报检索、模式识别、在线分析处理和专家系统(依靠过去的经验)等方法或技术,发现隐含在其中、事先不知道但又是潜在有用的信息和知识的信息处理过程。根据上述定义,下列选项不属于数据挖掘应用的是:
多元线性回归方程中自变量的选择有哪两种方法?()
直线x—y+m=0与圆x2n+y2n一2x一1=0有两个不同交点的一个充分不必要条件是()。
设.(Ⅰ)当a,b为何值时,β不可由α1,α2,α3线性表示;(Ⅱ)当a,b为何值时,β可由α1,α2,α3线性表示,写出表达式.
考虑二元函数f(χ,y)在点(χ0,y0)处的下面四条性质:①连续②可微③f′χ(0,y0)与f′y(χ0,y0)存在④f′χ与f′y(χ,y)连续若用“PQ”表示可由性质P推出性质Q,则有().
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,(Ⅰ)求a的值;(Ⅱ)求齐次方程组(i)的解;(Ⅲ)求齐次方程(ii)的解.
随机试题
()是公安工作贯彻群众路线的重要方面,是公安机关执法思想的核心。
某品牌餐具正常使用会产生有害物质,严重损害使用者健康。根据《产品质量法》,该餐具属于【】
对于慢性闭锁性牙髓炎,医生应注意的是
A省公路管理部门利用世界银行贷款建设由B市通往该省T港口的高速公路项目(简称BT高速公路)。BT高速公路全长114km,于2011年初开工,2012年底完工,并于2013年1月投入运营。2018年初,A省公路管理部门决定开展该项目的后评价工作,并组织了项目
宽度小于1m的窗间墙,应选用整砖砌筑,半砖和破损的砖,应分散使用于()。
( )是准确度低于计量标准的,用于检定其他计量标准或工作计量器具的计量器具。
假如你已是一名公务员,在实际工作中,你将会怎样处理同上级的关系?
[*]
【F1】AnydiscussionoftheAmericaneducationalsystemwouldbelessthancompleteifitdidnotmentiontheemphasisthatmanyc
ThereisnoquestionbutthatNewtonwasahighlycompetentMinisteroftheMint.Itwasmainlythroughhisefforts【41】theEngli
最新回复
(
0
)