首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn-1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn-1正交,则( )
设α1,α2,…,αn-1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn-1正交,则( )
admin
2016-02-27
26
问题
设α
1
,α
2
,…,α
n-1
是R
n
中线性无关的向量组,β
1
,β
2
与α
1
,α
2
,…,α
n-1
正交,则( )
选项
A、α
1
,α
2
,…,α
n-1
,β
1
必线性相关。
B、α
1
,α
2
,…,α
n-1
,β
1
,β
2
必线性无关。
C、β
1
,β
2
必线性相关。
D、β
1
,β
2
必线性无关。
答案
C
解析
由n+1个n维向量必线性相关可知B选项错。
若α
i
(i=1,2,…,n-1)是第i个分量为1,其余分量全为0的向量,β
1
是第n个分量为1,其余分量全为0的向量,β
2
是第n个分量为2,其余分量全为0的向量,则α
1
,α
2
,…,α
n-1
,β
1
线性无关,β
2
=2β
1
,所以选项A和D错误。
下证C选项正确:
因α
1
,α
2
,…,α
n-1
,β
1
,β
2
必线性相关,所以存在n+1个不全为零的常数k
1
,k
2
,…,k
n-1
,l
1
,l
2
,使
k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
+l
1
β
1
+l
2
β
2
=0,
又因为α
1
,α
2
,…,α
n-1
线性无关,所以l
1
,l
2
一定不全为零,否则α
1
,α
2
,…,α
n-1
线性相关,产生矛盾。
在上式两端分别与β
1
,β
2
作内积,有
(l
1
β
1
+l
2
β
2
,β
1
)=0, ①
(l
1
β
1
+l
2
β
2
,β
2
)=0, ②
联立两式,l
1
×①+l
2
×②可得
(l
1
β
1
+l
2
β
2
,l
1
β
1
+l
2
β
2
)=0,
从而可得 l
1
β
1
+l
2
β
2
=0,
故β
1
,β
2
必线性相关。故选C。
转载请注明原文地址:https://kaotiyun.com/show/crbD777K
0
考研数学二
相关试题推荐
管理者要善于使用不同的管理方法实施组织目标。在管理中行政方法与法律方法共同的特点是()。
管理幅度(管理跨度)是指一个人或者组织直接管理的下属人员或机构的数目,在以下情况下,管理幅度可以加宽的是()。
孔子提倡中庸之道的理论基础是()。
利用物体热辐射来进行的军事侦察叫做()。
发明的专利权、版权或商业秘密带来的独占权,是由哪种市场垄断造成的?()
设f(χ)为[-a,a]上的连续的偶函数且f(χ)>0,令F(χ)=∫-aa|χ-t|f(t)dt..(Ⅰ)证明:F′(χ)单调增加.(Ⅱ)当χ取何值时,F(χ)取最小值?(Ⅲ)当F(χ)的最小值为f(a)-a2-1时,求函数f(χ).
设函数f(χ)(χ≥0)连续可导,且f(0)=1.又已知曲线y=f(χ)、χ轴、y轴及过点(χ,0)且垂直于χ轴的直线所围成的图形的面积与曲线y=f(χ)在[0,χ]上的一段弧长相等,求f(χ).
设F(x,y)在点(x0,y0)某邻域有连续的偏导数,F(x0,y0)=0,则F’y(x0,y0)≠0是F(x,y)=0在点(x0,y0)某邻域能确定一个连续函数y=y(x),它满足y0=y(x0),并有连续的导数的_________条件.
(Ⅰ)求累次积分.(Ⅱ)设连续函数f(x)满足f(x)=1+∫01f(y)f(y一x)dy,求I=∫01f(x)dx。
设A=,且B=P—1AP.(Ⅰ)求矩阵A的特征值与特征向量;(Ⅱ)当P=时,求矩阵B;(Ⅲ)求A100.
随机试题
(2012年)下列金融机构中,由中国银行业监管委员会负责监管的有()。
压力表用于准确地测量锅炉上所需测量部位压力的大小,应安装合理,便于观察,且灵敏可靠。下列关于锅炉压力表安全技术要求的说法中,正确的是()。
生殖器结核的治疗,下列不恰当的是
质量计划的作用通常不包括
根据《建筑抗震设计规范》(GB50011—2010)的规定,在深厚第四系覆盖层地区,对于可液化土的液化判别,下列选项中哪个不正确?()
保险人应履行保险合同所约定的保险赔偿义务,但被保险人或受益人不能获得超过实际损失或约定保险金额的补偿。这体现了保险合同执行的()。
甲公司拟吸收合并乙公司。下列关于乙公司解散的表述中,符合公司法律制度规定的是()。
下列情形中,最有可能导致注册会计师不能执行财务报表审计的是()。
某端口的IP地址为172.16.7.131/26,则该IP地址所在网络的广播地址是()。
[*]
最新回复
(
0
)