首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列二重积分: (Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1; (Ⅱ)I=|3x+4y| dxdy,其中D:x2+y2≤1; (Ⅲ)I=,其中D由直线x=-2,y=0,y=2及曲线x=所围成.
求下列二重积分: (Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1; (Ⅱ)I=|3x+4y| dxdy,其中D:x2+y2≤1; (Ⅲ)I=,其中D由直线x=-2,y=0,y=2及曲线x=所围成.
admin
2017-05-31
104
问题
求下列二重积分:
(Ⅰ)I=
,其中D为正方形域:0≤x≤1,0≤y≤1;
(Ⅱ)I=
|3x+4y| dxdy,其中D:x
2
+y
2
≤1;
(Ⅲ)I=
,其中D由直线x=-2,y=0,y=2及曲线x=
所围成.
选项
答案
考察积分区域与被积函数的特点,选择适当方法求解. (Ⅰ)尽管D的边界不是圆弧,但由被积函数的特点知选用极坐标比较方便. D的边界线x=1及y=1的极坐标方程分别为 [*] (Ⅱ)在积分区域D上被积函数分块表示,若用分块积分法较复杂.因D是圆域,可用极坐标变换,转化为考虑定积分的被积函数是分段表示的情形.这时可利用周期函数的积分性质. 作极坐标变换x=cosθ,y=rsinθ,则D:0≤0≤2π,0≤r≤1.从而 [*] 其中[*].由周期函数的积分性质,令t=θ+θ
0
就有 [*] (Ⅲ)D的图形如图8.27所示.若把D看成正方形区域挖去半圆D
1
,则计算D
1
上的积分自然选用极坐标变换.若只考虑区域D,则自然考虑先x后y的积分顺序化为累次积分.若注意D关于直线y=1对称,选择平移变换则最为方便. [*] 作平移变换u=x,v=y-1,注意曲线x=[*], 即 x
2
+(y-1)
2
=1,x≤0,则D变成D’. D’由u=-2,v=-1,v=1,u
2
+v
2
=1(u≤0)围成,则 I=[*] (在uv平面上,D’关于u轴对称)
解析
转载请注明原文地址:https://kaotiyun.com/show/crt4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续可导,且f(0)=0,证明:∫01f2(x)dx≤1/2∫01f’2(x)dx.
求z=x2+12xy+2y2在区域4x2+y2≤25上的最值.
设z=f(x,y)是由e2yz+x+y2+z=7/4确定的函数,则dz|(1/2,1/2)=________.
求函数f(x,y)=(x2+2x+y)ey的极值.
证明曲线有位于同一直线上的三个拐点.
求f(x)的值域。
设函数f(x),g(x)在上连续,且g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈(a,b),使
计算二重积分,其中区域D为曲线r=1+cosθ(0≤0≤π)与极轴围成.
平面曲线L:绕x轴旋转所得曲面为S,求曲面S的内接长方体的最大体积.
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的,求全部融化需要的时间.
随机试题
下列不属于EDTA分析特性的选项为()。
下列关于乳腺癌的描述,恰当的是
下述内容,正确的是
久泻或佝偻病的患儿脱水及酸中毒纠正后出现惊厥,多考虑为
形成Na+、K+在细胞内、外不均衡分布的原因是
上消化道大出血休克时,首选的治疗措施是()
关于或有事项,下列说法中正确的是()。
某乡镇小学为了提升小升初的竞争力,分设了重点班和非重点班,根据相关教育法律法规,责令其限期改正的责任部门是()
在VisualFoxPro中,为了使表具有更多的特性应该使用
TheFourteenthAmendmenttotheUnitedStatesConstitution,ratifiedin1868,prohibitsstategovernmentsfromdenyingcitizens
最新回复
(
0
)