首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求可逆矩阵P,使得P-1AP为对角矩阵.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2019-12-26
6
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
【解法1】对应于λ
1
=λ
2
=1,解齐次线性方程组(E-B)x=0,得基础解系 ξ
1
=(-1,1,0)
T
,ξ
2
=(-2,0,1)
T
; 对应于λ
3
=4,解齐次线性方程组(4E-B)x=0,得基础解系 ξ
3
=(0,1,1)
T
. 令矩阵 [*] 则 [*] 因Q
-1
BQ=Q
-1
C
-1
ACQ=(CQ)
-1
A(CQ),记矩阵 [*] 故P即为所求的可逆矩阵. 【解法2】由题设,有 A(α
1
-α
2
)=α
1
-α
2
,A(2α
1
-α
3
)=2α
1
-α
3
,A(α
2
+α
3
)=4(α
2
+α
3
), 从而α
1
-α
2
,2α
1
-α
3
是A的属于特征值1的两个特征向量,α
2
+α
3
是A的属于特征值4的特征向量.又α
1
-α
2
,aα
1
-α
3
线性无关,从而α
1
-α
2
,2α
1
-α
3
,α
2
+α
3
线性无关,故P=(α
1
-α
2
,2α
1
-α
3
,α
2
+α
3
)为所求的可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/dFD4777K
0
考研数学三
相关试题推荐
向量组α1=(1,0,1,2)T,α2=(1,1,3,1)T,α3=(2,一1,α+1,5)T线性相关,则a=__________.
设在x=0处连续,则a=________,b=________.
若行列式的第j列的每个元素都加1,则行列式的值增加Aij.
微分方程y2dx+(x2一xy)dy=0的通解为__________.
函数的连续区间是__________.
设A为三阶方阵,a为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α,证明:矩阵B=[α,Aα,A4α]可逆.
判断级数的敛散性.
级数的和为________。
幂级数的收敛半径为________..
设求f[φ(x)]。
随机试题
化学腐蚀可分为在非电解质溶液中的腐蚀和()腐蚀两种。
以下关于桩冠修复中桩长度的说法不正确的是
下列哪一药物不具有抗幽门螺杆菌的作用
男性,有慢性支气管炎史10年,经常住院。3天前感冒后再次出现咳嗽、咳痰加重。外周血白细胞12×109/L。此病人痰涂片革兰染色后最可能有下列哪项发现
A.1年B.3年C.4年D.5年根据《医疗机构制剂注册管理办法(试行)》,医疗机构制剂批准文号的有效期为()。
下列工程造价控制内容中,属于工程造价动态比较内容的有()。
在Excel扣,工作表内用于输入和编辑数字、文字、公式等的长方形的空白位置称为()。
为了反映工资结算业务和工资费用的分配情况,企业应设置()账户。
阅读下列材料,回答问题。马老师在活动课上针对学生个体差异性开设了“手绘”“积木”“物理实验”等小组,充分发挥学生兴趣,激励学生。同时,她为每一名学生建立了成长档案,记录他们的成长过程,而且作为评优的参考,深受家长的认同。小新的父母在外地
1/4
最新回复
(
0
)