首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求正交矩阵Q和对角矩阵A,使得QTAQ=A。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求正交矩阵Q和对角矩阵A,使得QTAQ=A。
admin
2018-02-07
43
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解。
求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A。
选项
答案
因为A是实对称矩阵,所以α与α
1
,α
2
正交,只需将α
1
与α
2
正交化。 由施密特正交化法,取 β
1
=α
1
,β
2
=α
2
-[*]。 再将α,β
1
,β
2
单位化,得 [*] 令Q=(η
1
,η
2
,η
3
),则Q
-1
=Q
T
,且 Q
T
AQ=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/dTk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
设f(x+y,x-y)=ex2+y2(x2-y2),求函数f(x,y)和的值.
解下列不等式:(1)x2<9(2)|x-4|<7(3)0<(x-2)2<4(4)|ax-x。|<δ(a>0,δ>0,x。为常数)
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
微生物培养的增殖速率和它们现有的量及现有的营养物质的乘积成正比(比例系数为k),营养物质减少的速率和微生物的现有量成正比(比例系数为k1),实验开始时,容器内有x。g微生物和y。g营养物质,试求微生物的量及营养物质的量随时间的变化规律,并问何时微生物停止增
下列函数在给定区间上满足罗尔定理条件的是[].
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出.
当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
随机试题
(2006年4月)职工福利费计提比例为职工工资总额扣除奖金后的______。
管型构成的主要基质是
QRS-T波群消失,代之形态不同、大小各异、极不整齐的波形QRS-T波群?肖失,代之以匀齐的连续的正弦波
患者,男,62岁。1765、24567,4765、367缺失,可摘屑部义齿初戴后1个月,咀嚼时常咬颊黏膜,下颌舌侧第一磨牙至磨牙后垫区压痛,来院复诊。消除咬颊黏膜的方法是
人民法院审理行政案件时,应当对下列哪项进行审查?
简述电气设备安装工程预算定额中场内运搬定义。
下面的诗中不是杜甫的是()。
古人归纳总结出许多观天象识天气的谚语。下列与天气变化无关的谚语是()。
m个人的成绩存放在score数组中,请编写函数fun,它的功能是:将低于平均分的人数作为函数值返回,将低于平均分的分数放在below所指的数组中。例如,当score数组中的数据为:10、20、30、40、50、60、70、80、90时,函数返回的
Thefirstdaymynewteacherstoodinfrontoftheclass,Iburstintolaughter.RonClarkwasfromNorthCarolinaandhetalked
最新回复
(
0
)