首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n的矩阵,秩r(A)=r,则线性方程组Ax=0有非零解的充要条件是( ).
设A为m×n的矩阵,秩r(A)=r,则线性方程组Ax=0有非零解的充要条件是( ).
admin
2021-07-27
80
问题
设A为m×n的矩阵,秩r(A)=r,则线性方程组Ax=0有非零解的充要条件是( ).
选项
A、m<n
B、r<m<n
C、r<m
D、r<n
答案
D
解析
当m<n时,未知数的个数多于方程个数,因此,存在自由未知量,方程组必定有非零解;当m≥n时,其中的方程数在消元后实际方程数仍然可能小于n,方程组仍然可能有非零解.因此,m<n是方程组有非零解的充分条件,而能决定方程组有非零解的关键因素是方程组的独立方程个数与未知数个数的关系,所以选项(B),(C)也不是方程组有非零解的充要条件,故应诜(D).
转载请注明原文地址:https://kaotiyun.com/show/dTy4777K
0
考研数学二
相关试题推荐
设A是4×5矩阵,ξ1=[1,一1,1,0,0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,l,-2]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问t为何值时,向量组α1,α2,α3线性无关?(2)当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α1表示为α1和α2的线性组合.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.计算PTDP,其中
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
问λ为何值时,线性方程组有解,并求出解的一般形式.
线性方程组则()
设y=y(x)是由确定的隐函数,求y’(0)和y"(0)的值.
将曲线y=1-x2(0≤x≤1)和x轴与y轴所围的区域用曲线y=ax2分为面积相等的两部分,其中a是大于零的常数,求a的值.
用待定系数法求微分方程y″一y=xex的一个特解时,特解的形式是()(式中a,b为常数).
随机试题
A.错语B.独语C.郑声D.狂言E.谵语神志不清、语无伦次、声高有力,该病况称为
下列哪项不属于机械性损伤()
下图为不透水层上的排水廊道,已知:垂直于纸面方向长100m,廊道水深h=2m,含水层中水深H=4m,土壤的渗透系数k=0.001cm/s,廊道的影响半径R=200m,则廊道的排水流量Q为()。
根据《反价格垄断规定》的规定,经营者对交易相对人实行强制交易的正当理由中不包括()。
某居民企业(非金融企业)2015年12月31日归还境内关联企业一年期借款本金1000万元,另支付利息费用80万元,关联企业对该居民企业的权益性投资额为400万元,该居民企业的实际税负高于境内关联企业,同期同类银行贷款年利率为6%。该居民企业2015年在计算
房地产的供求状况可以分为()。
“不找任何借口”是世界500强企业关于优秀员工的12条核心标准之一。其意思包括()
《北京人在纽约》中有一句经典的台词“如果你爱他,就把他送到纽约,那里是天堂:如果你不爱他,那就把他送到纽约,那里是地狱。”这句话体现()。
有关外国市场进入模式的问题人们提到外国市场进入,会提到以下类型的基本模式:出口、许可、特许经营、通过直接投资建立合资企业或全资企业、管理合同和国际工程承包等,这些并不可以完全相互替代。请回答以下相关问题。[对外经济贸易大学2011国际商务硕士]出
将代数式转换成程序设计中的表达式为【】。
最新回复
(
0
)