首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,a33k;f(A)的对角线元素为f(
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,a33k;f(A)的对角线元素为f(
admin
2019-08-12
57
问题
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.
(2)证明上三角矩阵A的方幂A
k
与多项式f(A)也都是上三角矩阵;并且A
k
的对角线元素为a
11
k
,a
22
k
,…,a
33
k
;f(A)的对角线元素为f(a
11
),f(a
22
),…,f(a
nn
).
(a
11
,a
22
,…,a
nn
是A的对角线元素.)
选项
答案
(1)方法一 设A和B都是n阶上三角矩阵,C=AB,要说明C的对角线下的元素都为0,即i>j时,c
ij
=0.c
ij
=A的第i个行向量和B的第j个列向量对应分量乘积之和.由于A和B都是n阶上三角矩阵,A的第i个行向量的前面i-1个分量都是0,B的第j个列向量的后面n-j个分量都是0,而i-1+n-j=n+(i-j-1)≥n,因此c
ij
=0. c
ii
=a
i1
b
1i
+…+a
ii-1
b
i-1i
+a
ii
b
ii
+a
ii+1
+b
i+1i
+…+a
in
b
ni
=a
ii
b
ii
(a
i1
=…=a
ii-1
=0,b
i+1i
=…=b
ni
=0). 方法二 设A=(α
1
,α
2
,…,α
n
),B=(β
1
,β
2
,…,β
n
),C=(γ
1
,γ
2
,…,γ
n
).要证明每个γ
i
下面的n-i个分量都是0. 由(2.1),γ
i
=Aβ
i
.而β
i
的下面n-i个分量都是0,于是用(2.2) γ
i
=b
1i
α
1
+b
2i
α
2
+…+b
ii
α
i
. 则因为α
1
,α
2
,…,α
i
的下面n-i个分量都是0,所以γ
i
的下面n-i个分量也都是0. 并且γ
i
的第i个分量是(C的一个对角线元素) c
i
=b
1i
a
i1
+b
2i
a
i2
+…+b
ii
a
ii
=a
ii
b
ii
. (因为a
i1
=a
i2
=…=a
ii-1
=0.) (2)设A是上三角矩阵.由(1),直接可得A
k
是上三角矩阵,并且对角线元素为a
11
k
,a
22
k
,…,a
nn
k
. 设f(A)=a
m
A
m
+a
m-1
A
m-1
+…+a
1
A+a
0
E.a
i
A
i
都是上三角矩阵,作为它们的和,f(A)也是上三角矩阵.f(A)的对角线元素作为它们的对角线元素的和,是f(a
11
),f(a
22
),…,f(a
nn
).
解析
转载请注明原文地址:https://kaotiyun.com/show/C0N4777K
0
考研数学二
相关试题推荐
设f’(a)=b,f(a)=1.则
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记f(X)=,X∈Rn,X≠0证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_______.
设f(u,v)具有二阶连续偏导数,且满足fu’(u,v)+fv’(u,v)=uv求y=e-2xf(x,x)所满足的一阶微分方程,并求其通解.
设=A,证明:数列{an}有界.
计算定积分
求极限:
计算其中D是由圆周x2+y2=4,x2+y2=1及直线y=0,y=x所围的位于第一象限的闭区域.
求函数y=excosx的极值.
从总体N(100,4)中抽取样本容量为16的简单随机样本,样本均值为=0.95,求k的值.
随机试题
我国三大政策性银行成立于()年。
颅内压增高的辅助检查首选【】
下列账户中,期末时应将其本期发生额结转入“本年利润”账户借方的是:()。
下列药物中仅具有抗痛风作用的是
医患沟通的必要性体现在()
经营素食的名店是()。
案例2:汽车运价规则第一章总则第一条为统一全国汽车运价计算办法,正确执行《价格法》和国家物价政策,促进汽车运输事业发展,制定本规则。第二条本规则是计算汽车运费的依据。凡参与营业性运输活动的经营者、旅客、托运人,均应遵守本
“君子欲化民成俗,其必由学乎”“建国君民,教学为先”体现了()的教育目的观。
WhatisthebasichonorintakingpartintheOlympicGames?Accordingtothepassage,theOlympicGamesarenotonlysportgam
A、Inatravelagency.B、Onacampus.C、Inabookshop.D、Inateachers’shop.B
最新回复
(
0
)