首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,a33k;f(A)的对角线元素为f(
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,a33k;f(A)的对角线元素为f(
admin
2019-08-12
85
问题
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.
(2)证明上三角矩阵A的方幂A
k
与多项式f(A)也都是上三角矩阵;并且A
k
的对角线元素为a
11
k
,a
22
k
,…,a
33
k
;f(A)的对角线元素为f(a
11
),f(a
22
),…,f(a
nn
).
(a
11
,a
22
,…,a
nn
是A的对角线元素.)
选项
答案
(1)方法一 设A和B都是n阶上三角矩阵,C=AB,要说明C的对角线下的元素都为0,即i>j时,c
ij
=0.c
ij
=A的第i个行向量和B的第j个列向量对应分量乘积之和.由于A和B都是n阶上三角矩阵,A的第i个行向量的前面i-1个分量都是0,B的第j个列向量的后面n-j个分量都是0,而i-1+n-j=n+(i-j-1)≥n,因此c
ij
=0. c
ii
=a
i1
b
1i
+…+a
ii-1
b
i-1i
+a
ii
b
ii
+a
ii+1
+b
i+1i
+…+a
in
b
ni
=a
ii
b
ii
(a
i1
=…=a
ii-1
=0,b
i+1i
=…=b
ni
=0). 方法二 设A=(α
1
,α
2
,…,α
n
),B=(β
1
,β
2
,…,β
n
),C=(γ
1
,γ
2
,…,γ
n
).要证明每个γ
i
下面的n-i个分量都是0. 由(2.1),γ
i
=Aβ
i
.而β
i
的下面n-i个分量都是0,于是用(2.2) γ
i
=b
1i
α
1
+b
2i
α
2
+…+b
ii
α
i
. 则因为α
1
,α
2
,…,α
i
的下面n-i个分量都是0,所以γ
i
的下面n-i个分量也都是0. 并且γ
i
的第i个分量是(C的一个对角线元素) c
i
=b
1i
a
i1
+b
2i
a
i2
+…+b
ii
a
ii
=a
ii
b
ii
. (因为a
i1
=a
i2
=…=a
ii-1
=0.) (2)设A是上三角矩阵.由(1),直接可得A
k
是上三角矩阵,并且对角线元素为a
11
k
,a
22
k
,…,a
nn
k
. 设f(A)=a
m
A
m
+a
m-1
A
m-1
+…+a
1
A+a
0
E.a
i
A
i
都是上三角矩阵,作为它们的和,f(A)也是上三角矩阵.f(A)的对角线元素作为它们的对角线元素的和,是f(a
11
),f(a
22
),…,f(a
nn
).
解析
转载请注明原文地址:https://kaotiyun.com/show/C0N4777K
0
考研数学二
相关试题推荐
已知f’(x)=arctanx2,则
求分别满足下列关系式的f(x).1)f(x)=∫0xf(t)dt,其中f(x)为连续函数;2)f’(x)+xf’(一x)=x
求函数z=3axy—x3一y3(a>0)的极值.
(1998年)设(2E-C-1B)AT=C-1,其中E是4阶单位矩阵.AT是4阶矩阵A的转置矩阵.求A.
(02)已知矩阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
求三元函数f(x1,x2,x3)=3x12+2x22+3x32+2x1x3在x12+x22+x32=1条件下的最大及最小值,并求出最大值点及最小值点.
设f(u,v)具有二阶连续偏导数,且满足fu’(u,v)+fv’(u,v)=uv求y=e-2xf(x,x)所满足的一阶微分方程,并求其通解.
确定常数a,c,使得=c,其中c为非零常数.
计算二重积分其中D是由直线y=x和曲线y=x3所围成的位于第一象限的封闭区域.
随机试题
在训练时,会出现局部速度慢,而朗读的速度快,这就要求训练者()。
水产品可分为哪几类?
折价发行债券,最终实际收益率票面收益率。()
环境法主要包括自然资源法和环境保护法。下列法律中属于环境保护法的是
Hedidn’tremember______thebookandsaidhewouldgiveittomethenextday.
若气血壅结,肝体失和,腹内结块,则形成肝胆肾失调,气血水互结,酿生
一哺乳患者,右乳内发现直径4cm大肿块,疼痛已2天,多为
先张法预应力因没有管道,所以可以仅按张拉控制,不必以伸长量校验。( )
原型化过程一般是在获得系统的一组基本______后,即快速地加以实现。
InForcesofProduction,DavidNobleexaminesthetransformationofthemachine-toolindustryastheindustrymovedfromrelian
最新回复
(
0
)