首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程y"(3y’2—x)=y’满足初值条件y(1)=y’(1)一1的特解.
求微分方程y"(3y’2—x)=y’满足初值条件y(1)=y’(1)一1的特解.
admin
2019-06-28
52
问题
求微分方程y"(3y’
2
—x)=y’满足初值条件y(1)=y’(1)一1的特解.
选项
答案
[*] 化为 3p
2
dp一(xdp+pdx)=0. 这是关于p与x的全微分方程,解之得 p
3
一xp=C
1
. 以初值条件:x=1时,p=1代入,得 1—1=C
1
, 即C
1
=0.从而得 p
3
一xp=0. 分解成p=0及p
2
=x,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/dZV4777K
0
考研数学二
相关试题推荐
设三阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵A,使得QTAQ=A。
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。A是否可对角化?
设n阶矩阵A的秩为n一2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为_________。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,ξ1,…,ξn-r线性无关;
设向量α1,α2,…,αn-1是n一1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT。求矩阵A的特征值和特征向量。
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
随机试题
《中国制造2025》是我国政府实施制造强国战略第一个十年的行动纲领,其弱化了以往规划中“五年”的时间限制,更注重中长期规划。通过努力实现中国制造向中国创造、中国速度向中国质量、中国产品向中国品牌三大转变,推动中国到2025年基本实现工业化,迈入制造强国行列
结构的单元编码、节点编码、局部坐标系、整体坐标系如下图所示,各杆线刚度i相同,不计轴向变形,写出整体刚度矩阵和荷载列阵。
微分方程(x-2y)y’=2x-y的通解是()
用半透膜制备纯化水的方法可连续操作,热能利用率高
下列说法错误的是:()
某大型防洪工程由政府投资兴建。项目法人委托某招标代理公司代理施工招标。招标代理公司依据有关规定确定该项目采用公开招标方式招标,招标公告在当地政府规定的招标信息网上发布。招标文件中规定:投标担保可采用投标保证金或投标保函方式担保。评标方法采用经评审的最低投标
单位未设立档案机构的,应当在单位会计机构内部指定专人保管会计档案,但出纳人员不得兼管会计档案。()
一般来说,投资期限越长,有价证券的()。
下列关于天文学知识的说法中正确的一项是()。
下列各项中属于滥用代理权的情形是()。
最新回复
(
0
)