首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,对于齐次线性方程(Ⅰ)Anx=0和(Ⅱ)An+1x=0,则必有________。
设A为n阶矩阵,对于齐次线性方程(Ⅰ)Anx=0和(Ⅱ)An+1x=0,则必有________。
admin
2015-04-30
63
问题
设A为n阶矩阵,对于齐次线性方程(Ⅰ)A
n
x=0和(Ⅱ)A
n+1
x=0,则必有________。
选项
A、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解.
B、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.
C、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解.
D、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解.
答案
A
解析
若α是(Ⅰ)的解,即A
n
α=0,显然A
n+1
α=A(A
n
α)=A0=0,即α必是(Ⅱ)的解.可排除(C)和(D).
若η是(Ⅱ)的解,即A
n+1
η=0.假若η不是(Ⅰ)的解,即A
n
η≠0,那么对于向量组η,Aη,A
2
η,…,A
n
η,一方面这是n+1个n维向量必线性相关;另一方面,若
kη+k
1
Aη+k
2
A
2
η+…+k
n
A
n
η=0,
用A
n
左乘上式,并把A
n+1
η=0,A
n+2
η=0,…,代入,得kA
n
η=0.
由于A
n
η≠0,必有k=0.对
k
1
Aη+k
2
A
2
η+…+k
n
A
n
η=0,用A
n—1
左乘上式可推知k
1
=0.
类似可知k
i
=0(i=2,3,…,,1).于是向量组η,Aη,A
2
η,…,A
n
η线性无关,两者矛盾.所以必有A
n
η=0,即(Ⅱ)的解必是(Ⅰ)的解.由此可排除(B).故应选A.
转载请注明原文地址:https://kaotiyun.com/show/dfbD777K
0
考研数学二
相关试题推荐
中国古典文学艺术异彩纷呈,绚丽多姿,以其独特的意蕴与风格,成为世界文化宝库中的瑰宝。下列相关表述正确的有()。
随着社会信息化进程的加快,网络已经成为党执政的一个重要领域,信息手段也已成为党执政的一个重要方式。如果忽视了对这一阵地的占领、对这一方式的掌握,必将削弱党的执政基础,影响党的执政能力和水平。因此,党的执政能力提高得如何,不仅要考察真实世界的一系列指标,如经
随着社会信息化进程的加快,网络已经成为党执政的一个重要领域,信息手段也已成为党执政的一个重要方式。如果忽视了对这一阵地的占领、对这一方式的掌握,必将削弱党的执政基础,影响党的执政能力和水平。因此,党的执政能力提高得如何,不仅要考察真实世界的一系列指标,如经
有人断言:“近日股市可能会上涨。”下列哪项判断的意思和该人判断最为相近?()
关于区域经济一体化,下列说法不正确的是()。
两个红色正方形面积分别是19962平方米和19932平方米,两个蓝色正方形面积分别是19972平方米和19922平方米。问红色正方形和蓝色正方形面积相差多少平方米?
多元线性回归方程中自变量的选择有哪两种方法?()
一个容器的内表面侧面由曲线χ=(0≤χ≤2)绕χ轴旋转而成,外表面由曲线χ=在点(2,)的切线位于点(2,)与χ轴交点之间的部分绕χ轴旋转而成,此容器材质的密度为μ.求此容器自身的质量M及其内表面的面积S.
设α1,α2,α3,α4,β为四维列向量,A=[α1,α2,α3,α4],已知Ax=β的通解为X=[1,一1,2,1]T+k1[1,2,0,1]T+k2[一1,1,1,0]T,①其中[1,2,0,1]T,[一
随机试题
将打印纸打印面朝()放入打印机,将打印纸拉出一定长度,扣上打印机机盖。
下列选项中,不属于静止期牙周炎的病理变化的是
A.临床使用最广泛,固位、支持、稳定作用均较理想B.远端孤立基牙.并伴有颊或舌向倾斜C.可以有效防止食物嵌塞的卡环是D.游离端缺失.缺牙区牙槽嵴丰满.但末端基牙状况不理想时.应选用E.万能环.任何情况下都可作为临时替代品联合卡环
根据《中华人民共和国招标投标法》,以下项目中,可以不进行招标的是()。
下列属于全国人民代表大会预算管理职权的有()。
下列各项中,不属于消费税税目的有()。
资产负债表日,交易性金融资产的公允价值高于其账面余额的差额,借记“交易性金融资产”科目,贷记()。
体育教学计划分为哪几个层次?并说明制定课时教学目标的要素。
(下面是小学一年级教学a、o、e的教学片段)(出示本课情境图)师:看了这幅图,你想说什么?生:我觉得这里很美。师:美在哪儿?生(指着图):树木、房子、草地、小女孩、小河、小蜻蜓、大白鹅、小鸭子都很美。
计算机的应用领域可大致分为6个方面,下列选项中属于这几项的是
最新回复
(
0
)