首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证:f在条件x12+x22+…+x=1下的最大值恰好为矩阵A的最大特征值。
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证:f在条件x12+x22+…+x=1下的最大值恰好为矩阵A的最大特征值。
admin
2021-11-09
77
问题
对n元实二次型f=x
T
Ax,其中x=(x
1
,x
2
,…,x
n
)
T
。试证:f在条件x
1
2
+x
2
2
+…+x=1下的最大值恰好为矩阵A的最大特征值。
选项
答案
实二次型f=x
T
Ax所对应的矩阵A为实对称矩阵,则存在正交矩阵P使 [*] 其中λ
i
(i=1,2,…,n)是矩阵A的特征值。作线性变换x=Py,其中y=(y
1
,y
2
,…,y
n
)
T
,则 x
1
2
+x
2
2
+…+x
n
2
=x
T
x=y
T
(P
T
P)y
T
y=y
1
2
+y
2
2
+…+y
n
2
, f=x
T
Ax=y
T
(P
T
AP)y=λ
1
y
2
+λ
2
y
2
+…+λ
n
y
2
。 求f=x
T
Ax在条件x
T
x=1下的最大值可转化为求f=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
在条件y
1
2
+ y
2
2
+…+y
n
2
=1下的最大值。设c=max{λ
1
,λ
2
,…,λ
n
},则 f=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
≤c(y
1
2
+y
2
2
+…+y
n
2
)=c,上式取y=(1,0,…,0)
T
时,等号成立,此时f取到最大值c。故在条件x
T
x=1下f的最大值恰好为矩阵A的最大特征值。
解析
转载请注明原文地址:https://kaotiyun.com/show/dgy4777K
0
考研数学二
相关试题推荐
计算下列不定积分:
设f(χ)二阶可导,且=0,f(1)=1,证明:存在ξ∈(0,1),使得ξf〞(ξ)+2f′(ξ)=0.
设f(χ)二阶可导,f(1)=0,令φ(χ)=χ2f(χ),证明:存在ξ∈(0,1),使得φ〞(ξ)=0.
设z=z(x,y)是由确定的函数,求z=z(x,y)的极值点和极值.
极限=.
设函数f(x)连续,则等于().
设二次型xTAx=ax12+2x22-x32+8x1x2+2bx1x3+2cx2x3,实对称矩阵A满足AB=0,其中B=。(Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换;(Ⅱ)判断矩阵A与B是否合同,并说明理由。
设曲线y=ax2+bx+c过原点,且当0≤x≤1时,y≥0,并与x轴所围成的图形的面积为,试确定a、b、c的值,使该图形绕x轴旋转一周所得立体的体积最小.
设直线y=ax与抛物线y=x2所围成的图形的面积为S1,它们与直线x=1所围成的图形面积为S2,并且a<1.试确定a的值,使S=S1+S2达到最小,并求出最小值.
设f(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设x→0时,F(x)=f(t)dt与xk为同阶无穷小,其中m与n为正整数.则k=()
随机试题
全面依法治国需要遵循的法治建设新的十六字方针,下列说法正确的有()
在我国地方政府会议制度中,被称为“行政首长办公会议”的是()
角色期待
20周末胎儿发育特征为()
A.抑制血管紧张素Ⅱ受体的活性B.干扰细胞核酸代谢C.补充体内物质D.影响机体免疫功能E.阻滞细胞膜钠离子通道利多卡因抗心律失常作用的机制为
根据《中华人民共和国民事诉讼法》的规定,起诉必须符合的条件有()。
下列关于成本按性态分类的表述中,正确的有()。
Janewasdeterminedto______herselfintheAfricanwayoflife.
Allthatwereallyneedtoplotoutthefutureofouruniverseareafewgoodmeasurements.Thisdoesnotmeanthatwecansitd
A、Repairthecarhimself.B、Sellthecarandtakeatraintowork.C、Sellhisoldcarandbuyanewone.D、Findanewrepairsho
最新回复
(
0
)