首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Let’s be the set of all positive integers having at most 4 digits and such that each of the digits is 0 or 1.What is the greates
Let’s be the set of all positive integers having at most 4 digits and such that each of the digits is 0 or 1.What is the greates
admin
2022-10-18
45
问题
Let’s be the set of all positive integers having at most 4 digits and such that each of the digits is 0 or 1.What is the greatest prime factor of the sum of all the numbers in S?
选项
A、11
B、19
C、37
D、59
E、101
答案
E
解析
By writing down all the positive integers in S, their sum can be found.
The sum of these integers is 8,888. Since this sum is 8 × 1,111 = 2
3
× 11 × 101 (note that 1,111 = (11 × 100) +11), it follows that 101 is the largest prime factor of the sum.
Alternatively, we can simplify the description by letting the integers having fewer than four digits be represented by four-digit strings in which one or more of the initial digits is 0. For example, the two-digit number 10 can be written as 0010 = (0 × 10
3
) + (0 × 10
2
) + (1 × 10
1
) + (0 × 10
0
). Also, we can include 0 = 0000, since the inclusion of 0 will not affect the sum. With these changes, it follows from the Multiplication Principle that there are 2
4
= 16 integers to be added. Moreover, for each digit position (units place, tens place, etc.) exactly half of the integers will have a digit of 1 in that digit position. Therefore, the sum of the 16 integers will be (8 × 10
3
) + (8 × 10
2
) + (8 × 10
1
) + (8 × 10
0
), or 8,888. Note that this alternative method of finding the sum is much quicker than the other method if "at most four digits" had been "at most seven digits." In the case of "at most seven digits," there will be 2
7
= 128 integers altogether, and for each digit position, half of the integers will have a digit of 1 in that digit position and the other half will have a digit of 0 in that digit position. Thus, the sum will be (64 × 10
6
) + (64 × 10
5
) + ... + (64 × 10
0
) = 71,111,104. Incidentally, finding the greatest prime factor of 71,111,104 is not appropriate for a GMAT problem, but in this case a different question about the sum could have been asked.
The correct answer is E.
转载请注明原文地址:https://kaotiyun.com/show/dktO777K
本试题收录于:
GMAT QUANTITATIVE题库GMAT分类
0
GMAT QUANTITATIVE
GMAT
相关试题推荐
HarrietBeecherStowehadpouredherheartintoheranti-slaverybook,"UncleTom’sCabin".Butneithershenorherfirstpubl
"Hightech"and"stateoftheart"aretwoexpressionsthatdescribethemoderntechnology.Hightechisjustashorterwayofs
Hespendsmoneylikewater.Infact,hisexpensesonfoodandclothesareratherhigh______hisincome.
Itcanbereallyfrustrating(使人沮丧的)foranoverweightpersontogotoagymandworkoutwithapositiveattitude.Allonehasto
Itcanbereallyfrustrating(使人沮丧的)foranoverweightpersontogotoagymandworkoutwithapositiveattitude.Allonehasto
Morecanbelearnedaboutaculturefromastudyofarthistorythangeneralhistorybecause______.Whichofthefollowingsta
Ifathree-digitnumberisselectedatrandomfromtheintegers100to999,inclusive,whatistheprobabilitythatthefirstdi
Therateatwhicharoadwearsdependsonvariousfactors,includingclimate,amountoftraffic,andthesizeandweightofthe
现在有100个球,其中30个是白球,40个是红球,还有30个是蓝球,从中任意取出5个,其中至少4个是红球的概率?
正态分布中一组数的期望为3,方差为1,另一组数的期望为9,方差为2,那么数据分布在第一组数的区间(1,4)的概率和数据分布在第二组数的区间(5,11)的概率相比较结果如何?
随机试题
下列有关减轻患者痛苦的护理措施,描述错误的是
某县检察院以抢劫罪对孙某提起公诉,被害人李某提起附带民事诉讼。下列哪一种说法是正确的?
工程项目管理的核心是()。
关于双代号网络图的表述,不正确的是()。
FIDIC施工合同条件规定,当颁发整个工程的接收证书时,将()。
我国修订联合型瑞文测验时,合并原版测验包括()。
2010年5月11日上午,陆某等人经密谋,由黄某以介绍租房为名与龙某接触,并于次日中午将龙某骗到饭店包厢内,以冥币冒充人民币进行赌博,骗取龙某现金17250元及一枚金戒指、一条金项链,对于陆某等人,应该定为()。
Whatistheresultofthesurveyonleisuresportingactivitiesusedfor?
Whatdoesthewomanwant?
Forsomeemployers,thepolicyoflifelongemploymentisparticularlyimportantbecauseitmeansthattheycanputmoneyandeff
最新回复
(
0
)