首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Let’s be the set of all positive integers having at most 4 digits and such that each of the digits is 0 or 1.What is the greates
Let’s be the set of all positive integers having at most 4 digits and such that each of the digits is 0 or 1.What is the greates
admin
2022-10-18
98
问题
Let’s be the set of all positive integers having at most 4 digits and such that each of the digits is 0 or 1.What is the greatest prime factor of the sum of all the numbers in S?
选项
A、11
B、19
C、37
D、59
E、101
答案
E
解析
By writing down all the positive integers in S, their sum can be found.
The sum of these integers is 8,888. Since this sum is 8 × 1,111 = 2
3
× 11 × 101 (note that 1,111 = (11 × 100) +11), it follows that 101 is the largest prime factor of the sum.
Alternatively, we can simplify the description by letting the integers having fewer than four digits be represented by four-digit strings in which one or more of the initial digits is 0. For example, the two-digit number 10 can be written as 0010 = (0 × 10
3
) + (0 × 10
2
) + (1 × 10
1
) + (0 × 10
0
). Also, we can include 0 = 0000, since the inclusion of 0 will not affect the sum. With these changes, it follows from the Multiplication Principle that there are 2
4
= 16 integers to be added. Moreover, for each digit position (units place, tens place, etc.) exactly half of the integers will have a digit of 1 in that digit position. Therefore, the sum of the 16 integers will be (8 × 10
3
) + (8 × 10
2
) + (8 × 10
1
) + (8 × 10
0
), or 8,888. Note that this alternative method of finding the sum is much quicker than the other method if "at most four digits" had been "at most seven digits." In the case of "at most seven digits," there will be 2
7
= 128 integers altogether, and for each digit position, half of the integers will have a digit of 1 in that digit position and the other half will have a digit of 0 in that digit position. Thus, the sum will be (64 × 10
6
) + (64 × 10
5
) + ... + (64 × 10
0
) = 71,111,104. Incidentally, finding the greatest prime factor of 71,111,104 is not appropriate for a GMAT problem, but in this case a different question about the sum could have been asked.
The correct answer is E.
转载请注明原文地址:https://kaotiyun.com/show/dktO777K
本试题收录于:
GMAT QUANTITATIVE题库GMAT分类
0
GMAT QUANTITATIVE
GMAT
相关试题推荐
Weallknowthatitispossibleforordinarypeopletomaketheirhomesontheequator(赤道),althoughoftentheymayfeeluncomfo
Atransplantoperationissuccessfulonlyifdoctorscanpreventthebodyfromrejectingthe______organ.
Ifxis1,2,3or4andyis2,4or8,thentheproductxycanhavehowmanydifferentpossiblevalues?
Patriciapurchasedxmetersoffencing.Sheoriginallyintendedtouseallofthefencingtoencloseasquareregion,butlater
A事件发生的概率是0.5,B事件发生的概率是0.3,AB同时发生的概率是0.1,问A不发生并且B不发生的概率?
6个相同的球放在1,2,3,4四个杯中,要求每个杯中至少放一个,一共有多少种不同的放法?
今年5月,上海某家汽车制造厂上线了人们期盼已久的新轿车,在这些轿车中,有20%是红色的,80%是蓝色的;有25%的车排放量是1.6升,有75%的车排放量是1.8升。如果在100辆轿车中有10辆车是红色并且排放量为1.6升,那么有多少辆车是蓝色并且排放量为1
假设有标号1~5号的5个球,质地、大小均一致,放入一个盲盒中。(1)假如摸出1个球后,记下编号,然后放回盒中,再摸出1个球记下编号,问一共有多少种编号组合的可能?(2)假如摸出1个球后,记下编号,不放回(withoutreplacement),再摸出
100个人中,88个有电视,76个有报纸,有电视没报纸的是x个,问有报纸没电视的有多少?
某一个九宫格内要放置a,b,c三个元素,如果每行每列都必须包含a,b,c,那么一共有多少种不同的排法?
随机试题
A.左侧卧位听诊B.右侧卧位听诊C.仰卧位听诊D.前倾坐位听诊E.Valsalva动作听诊二尖瓣狭窄常采取
男性,34岁,因急性阑尾炎穿孔伴局限性腹膜炎,行阑尾切除术后5天,仍有腹痛、腹胀,体温38℃以上,排便3~5次/天,有下坠感。血WBC18×109/L。应首先考虑为
《职业健康安全管理体系——规范(CB/T28001)》和《环境管理体系——规范及使用指南(CB/T24001)》两个体系总体框架相同,都采用了()循环的运行模式和持续改进的理念,两个管理体系的运行模式完全相同。
卵石
中国证监会领导干部离职后()年内,不得到与原来工作业务直接相关的机构任职。
将产业划分为资本密集型、劳动密集型和技术密集型的依据是产业()。
督导者和被督导者之间不应该仅仅停留在专业关系上,()也十分重要。
美术教学过程的基本阶段分为感知阶段、理解阶段、巩固阶段和()。
在下列叙述中,错误的是
Shesuggestedatthemeetingthatwe______canceltheoriginalplan.
最新回复
(
0
)