首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a).f(b)>0,f(a).k∈R,存在点ξ∈(a,b),使得f’(ξ)=kf(ξ).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a).f(b)>0,f(a).k∈R,存在点ξ∈(a,b),使得f’(ξ)=kf(ξ).
admin
2017-07-26
45
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a).f(b)>0,f(a).
k∈R,存在点ξ∈(a,b),使得f’(ξ)=kf(ξ).
选项
答案
令F(x)=e
—kξ
f(x),则由题设可知,F(x)在[a,b]上连续.不妨假定f(a)>0,于是有 [*] F(x
1
)=F(x
2
)=0. 所以F(x)在[x
1
,x
2
]上连续,在(x
1
,x
2
)内可导,且F(x
1
)=F(x
2
)=0.由洛尔定理,存在点ξ∈(x
1
,x
2
)[*](a,b),使得F’(ξ)=0,即e
—kξ
[f’(ξ)一kf(ξ)]=0,故有f’(ξ)一kf(ξ)=0.
解析
欲证存在点ξ∈(a,b),使得f’(ξ)一kf(ξ)=0,即e
—kξ
[f’(ξ)一kf(ξ)]=0,
即
[e
—kξ
f(x)]’|
x=ξ
=0.
可作辅助函数:F(x)=e
—kξ
f(x),用介值定理和洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/duH4777K
0
考研数学三
相关试题推荐
[*]
设A是n阶矩阵,且A的行列式|A|=0,则A________.
设A为3阶矩阵,α。,α为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α11,α2,α3),求P-1AP.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0使得AB=0,则
设A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
设A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;
设连续函数f(x)满足,则f(x)=_________.
设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____________.
设其导函数在x=0处连续,则λ的取值范围是__________.
向量组a1,a2,…,as线性无关的充分条件是().
随机试题
如图所示,以下哪种停车行为是正确的?
Whenyou______yourmeal,we’llgotothemoviestogether.
女性,77岁。多年外痔,昨日排便时用力过大,时间较久,便后发生痔核突然肿胀,疼痛难忍,坐卧不安。拟进一步检查取何种体位
患者,男性,28岁。8年来站立或腹压增高时反复出现右腹股沟肿物,平卧安静时肿块明显缩小或消失。10小时前因提重物而肿块又出现,伴腹痛、呕吐,肛门停止排气和排便。体检示右阴囊红肿,可见一梨状肿块,平卧后肿块不消失。本例患者最有效的治疗措施是
预警分析主要是()。
直辖市的城市总体规划报()审批。
预算会计适用于()。
ThespokesmanofJapan’s"Enlightenment"thinksthatWhichofthefollowingstatementoftheJapan’scultureistrueaccording
MoreThanaRidetoSchoolTheNationalEducationAssociationclaims,"Theschoolbusisamirrorofthecommunity."Theyf
Childrenmodelthemselveslargelyontheirparents.Theydosomainlythroughidentification.Childrenidentify【C1】______apar
最新回复
(
0
)