首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a).f(b)>0,f(a).k∈R,存在点ξ∈(a,b),使得f’(ξ)=kf(ξ).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a).f(b)>0,f(a).k∈R,存在点ξ∈(a,b),使得f’(ξ)=kf(ξ).
admin
2017-07-26
26
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a).f(b)>0,f(a).
k∈R,存在点ξ∈(a,b),使得f’(ξ)=kf(ξ).
选项
答案
令F(x)=e
—kξ
f(x),则由题设可知,F(x)在[a,b]上连续.不妨假定f(a)>0,于是有 [*] F(x
1
)=F(x
2
)=0. 所以F(x)在[x
1
,x
2
]上连续,在(x
1
,x
2
)内可导,且F(x
1
)=F(x
2
)=0.由洛尔定理,存在点ξ∈(x
1
,x
2
)[*](a,b),使得F’(ξ)=0,即e
—kξ
[f’(ξ)一kf(ξ)]=0,故有f’(ξ)一kf(ξ)=0.
解析
欲证存在点ξ∈(a,b),使得f’(ξ)一kf(ξ)=0,即e
—kξ
[f’(ξ)一kf(ξ)]=0,
即
[e
—kξ
f(x)]’|
x=ξ
=0.
可作辅助函数:F(x)=e
—kξ
f(x),用介值定理和洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/duH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
[*]
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=0,y’(0)=2的特解,则∫01y(x)dx=__________.
设x轴正向到方向l的转角为ψ,求函数f(x,y)=x2-xy+y2在点(1,1)沿方向z的方向导数,并分别确定转角ψ,使得方向导数有(1)最大值,(2)最小值,(3)等于0.
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率a,并用泊松分布求出a的近似值(小数点后取两位有效数字).[附表]
设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____________.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,l,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设函数f(x)在[a,b]上满足a≤f(x)≤b,|fˊ(x)|≤q<1,令un=f(un-1),n=1,2,3,…,uo∈[a,b],证明:
随机试题
以下哪种情况,患者血清电泳可出现2条清蛋白带A.干扰素治疗乙型肝炎时B.心梗患者舌下含服硝酸甘油C.中暑患者大量补液D.肺结核患者出现胸腔积液时E.大剂量青霉素治疗大叶性肺炎
某地区准备从口腔鳞癌患者的病历资料中分析该地区人群口腔鳞癌发病率的性别分布,该口腔流行病学研究的方法是
苍耳子用治白芷多用治
编制投资估算时,生产能力指数法是根据( )来估算拟建项目投资额的方法。
股份有限公司是由一定数量以上的股东组成、公司全部资本为等额股份、股东以其所认股份为限对公司承担责任、公司以其部分资产对公司债务承担责任的公司。()
A公司为上市公司。2×11年1月20日,A公司向25名公司高级管理人员授予了1500万股限制性股票,授予价格为8元,授予后锁定3年。2×11年、2×12年、2×13年为申请解锁考核年,每年的解锁比例分别为30%、30%和40%,即450万股、450万股和6
“苹果”创始人乔布斯的主要贡献有()。
InCambodia,thechoiceofaspouseisacomplexonefortheyoungmale.Itmayinvolvenotonlyhisparentsandhisfriends,【B
设有定义:charp[]={’1’,’2’,’3’),*q=p;以下不能计算出一个char型数据所占字节数的表达式是
______isNOTablacknovelist.
最新回复
(
0
)