首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a).f(b)>0,f(a).k∈R,存在点ξ∈(a,b),使得f’(ξ)=kf(ξ).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a).f(b)>0,f(a).k∈R,存在点ξ∈(a,b),使得f’(ξ)=kf(ξ).
admin
2017-07-26
83
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a).f(b)>0,f(a).
k∈R,存在点ξ∈(a,b),使得f’(ξ)=kf(ξ).
选项
答案
令F(x)=e
—kξ
f(x),则由题设可知,F(x)在[a,b]上连续.不妨假定f(a)>0,于是有 [*] F(x
1
)=F(x
2
)=0. 所以F(x)在[x
1
,x
2
]上连续,在(x
1
,x
2
)内可导,且F(x
1
)=F(x
2
)=0.由洛尔定理,存在点ξ∈(x
1
,x
2
)[*](a,b),使得F’(ξ)=0,即e
—kξ
[f’(ξ)一kf(ξ)]=0,故有f’(ξ)一kf(ξ)=0.
解析
欲证存在点ξ∈(a,b),使得f’(ξ)一kf(ξ)=0,即e
—kξ
[f’(ξ)一kf(ξ)]=0,
即
[e
—kξ
f(x)]’|
x=ξ
=0.
可作辅助函数:F(x)=e
—kξ
f(x),用介值定理和洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/duH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
[*]
曲线在点(1,1,3)处的切线方程为_____.
设f(x,y)在[a,b]×[c,d]上连续,,证明:gxy=gyx(x,y)=f(x,y)(a<x<b,c<y<d).
函数f(μ,ν)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_____________.
设A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
随机试题
位于PRECEDE模式第四阶段的是()
对于本案,确定管辖的方式正确的是()。法院裁定音像公司停止生产光盘的措施是()。
我国大华公司向美国小山公司发出传真稿:“急购一级田纳西大米20号,每吨500美元CIF深圳,2001年12月9日至21日装船”。美国小山公司回电称:“完全接受你方条件,2001年12月4日装船”。双方的合同是否成立?
若社会无风险投资收益率为3%(长期国债利率),市场投资组合预期收益率为12%,某项目的投资风险系数为1.1,采用资本资产定价模型,则普通股资金成本为()
工程项目管理信息系统中,属于进度控制功能的是()。
从1,2,3,…,30这30个数中,取出若干个数,使其中任意两个数的积都不能被4整除。问最多可取几个数?
许多国家首脑在出任前并未有丰富的外交经验,但这并没有妨碍他们做出成功的外交决策。外交学院的教授告诉我们,丰富的外交经验对于成功的外交决策是不可缺少的。但事实上,一个人,只要有高度的政治敏感、准确的信息分析能力和果断的个人勇气,就能很快地学会如何做出成功的外
=_______.
Idonotknowwhere(couldhehave)(gone)(soearly)(inthe)morning.
TakeataxiinShanghaiandyouwillpaymomthanyouwouldforarideof【1】______distanceinBeijing.
最新回复
(
0
)