首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组 (Ⅰ):α1,α2,α3; (Ⅱ)α1,α2,α3,α4; (Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4. 证明:向量组(Ⅳ):α1,α2,α3,α5-α4的秩为4.
已知向量组 (Ⅰ):α1,α2,α3; (Ⅱ)α1,α2,α3,α4; (Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4. 证明:向量组(Ⅳ):α1,α2,α3,α5-α4的秩为4.
admin
2021-01-25
65
问题
已知向量组
(Ⅰ):α
1
,α
2
,α
3
;
(Ⅱ)α
1
,α
2
,α
3
,α
4
;
(Ⅲ):α
1
,α
2
,α
3
,α
5
.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.
证明:向量组(Ⅳ):α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
1 因R(Ⅰ)=R(Ⅱ)=3,所以α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,故存在数λ
1
,λ
2
,λ
3
,使得 α
4
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
(*) 设有数k
1
,k
2
,k
3
,k
4
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(α
5
-α
4
)=0 将(*)式代入上式并化简,得 (k
1
-λ
1
k
4
)α
1
+(k
2
-λ
2
k
4
)α
2
+(k
3
-λ
3
k
4
)α
3
+k
4
α
5
=0,由R(Ⅲ)=4知α
1
,α
2
,α
3
,α
5
线性无关,所以 [*] 得k
1
=k
2
=k
3
=k
4
=0,故α
1
,α
2
,α
3
,α
5
-α
4
线性无关,即其秩为4. 2 同证1可知存在数λ
1
,λ
2
,λ
3
,使得 α
4
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
所以有α
5
-α
4
=-λ
1
α
1
-λ
2
α
2
-λ
3
α
3
+α
5
即α
5
-α
4
可由向量组(Ⅲ)线性表示,于是知(Ⅳ)可由(Ⅲ)线性表示.又 α
5
=α
4
+(α
5
-α
4
)=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
+(α
5
-α
4
) 即α
5
可由向量组(Ⅳ)线性表示,于是知(Ⅲ)可由(Ⅳ)线性表示.因此,向量组(Ⅲ)与向量组(Ⅳ)等价,[*]R(Ⅳ)=R(Ⅲ)=4.
解析
本题主要考查向量组线性相关性的概念及线性相关性与向量组的秩的关系.注意1是利用定义证明向量组(Ⅳ)线性无关,其中利用了“若α
1
,…,α
r
线性无关,而α
1
,…,α
r
,β线性相关,则β可由α
1
,…,α
r
线性表示”的结论.
转载请注明原文地址:https://kaotiyun.com/show/dyx4777K
0
考研数学三
相关试题推荐
证明:
设函数z=z(x,y)由方程xy+yz+zx=1确定,求
已知A=,求可逆矩阵P,化A为标准形A,并写出对角矩阵A
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求:U和V的联合分布;
[2016年]设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,}上服从均匀分布,令问U与X是否相互独立?并说明理由.
(99年)设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设矩阵A=且A3=0.(I)求a的值; (Ⅱ)若矩阵X满足X—XA2一AX+AXA2=E,其中E为3阶单位矩阵,求X.
[2010年]箱内有6个球,其中红、白、黑球的个数分别为1,2,3个.现从箱中随机的取出2个球.记X为取出的红球个数,Y为取出的白球个数.求cov(X,Y).
(2003年)设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex.(1)求F(x)所满足的一阶方程;(2)求出F(x)
(1992年)级数的收敛域为______.
随机试题
A、 B、 C、 D、 B
上颌第一磨牙近远中向隐裂,可能发生的不良影响是
熊胆主治
适用高血压伴有胃、十二指肠溃疡病人的药是因加快心率而易诱发心绞痛的药物是
下列表述中,属于法的深层本质的是()。
糯米对于()相当于()对于油条
下列叙述中正确的是()。
一个字符的标准ASCⅡ码的长度是()。
将考生文件夹下HIGER\YION文件夹中的文件ARIP.BAT重命名为FAN.BAT。
Motherwasbusy______whenyourangup.
最新回复
(
0
)