首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为 求两个部件的寿命都超过100小时的概α.
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为 求两个部件的寿命都超过100小时的概α.
admin
2019-05-08
33
问题
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为
求两个部件的寿命都超过100小时的概α.
选项
答案
解一 α=P(X>0.1,Y>0.1)=P(X>0.1)P(Y>0.1) (因X,Y相互独立) =[1-P(X≤0.1)][1-P(Y≤0.1)]=[1-F
X
(0.1)][1-F
Y
(0.1)] =e
0.05
·e
0.05
=e
-0.1
. 解二 因X,Y相互独立,故 [*] 解三 由上题的解一知,X,Y相互独立,且均服从参数为λ=0.5的指数分布.利用命题3.2.3.2(4)即得 α=P(X>0.1,Y>0.1)=P(X>0.1)P(Y>0.1) =e
-λx
.e
λx
=(e
-0.5×0.1
)
2
=e
-0.5×2
e
-0.1
. 上述三种求法都用到了X,Y的独立性.下述两种算法可以不用. 解四 由[*] 得所求概率为 [*] 解五 利用下述结论求之.对任意(x
1
,y
1
),(x
2
,y
2
),x
1
2,y
1
2,有 P(x
1
2,y
1
2)=F(x
2
,y
2
)-F(x
1
,y
2
)-Fx
2
,y
1
)+F(x
1
,y
1
). 于是 α=P(X>0.1,Y>0.1)=P(0.1
-0.05)-(1-e
-0.05
)+1-e
-0.05
-e
-0.05
+e
-0.1
=e
-0.1
. 注:命题3.2.3.2 (4)若X服从参数为λ的指数分布,其中λ>0,a>0,则 P(X>a)=e
-λa
,P(X
-λa.
解析
转载请注明原文地址:https://kaotiyun.com/show/1EJ4777K
0
考研数学三
相关试题推荐
设an=.
设连续型随机变量X的分布函数F(x)=求:(Ⅰ)A和B;(Ⅱ)X的概率密度f(x)。
假设X是在区间(0,1)内取值的连续型随机变量,而Y=1一X。已知P{X≤0.29}=0.75,则满足P{Y≤k}=0.25的常数k=________。
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:(1)对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2).
一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率分别为0.1,0.2,0.3,假设各部件的状态相互独立,以X表示同时需要调整的部件数,求E(X),D(X).
微分方程y"+2y’一3y=ex有特解形式()
讨论函数的连续性.
已知数列{x}满足:x0=25,xn=arctanxn—1(n=1,2,3,…),证明{xn}的极限存在,并求其极限.
随机试题
2009年3月1日,甲房地产公司(简称甲公司)与乙建筑公司(简称乙公司)签订一份建筑工程承包合同,约定由乙公司承建甲公司开发的景明写字楼项目,工程价款5000万元,工期14个月。工程将要竣工时,甲公司因资金短缺,无力继续提供约定由其提供的部分建筑材料。鉴于
Iamgoingtoseethedoctor,butyou______withme.
CT增强诊断,影像密度变化分析时的参照物是
患者,女,腹痛两天。其右下腹疼痛,从上腹部转移而来,按之疼痛不甚,突然放手疼痛加剧。舌红苔黄而干,脉数。该患者腹痛是
科学共产主义诞生的标志是()。
Itisfootballtimeagain.Currently,thequalifyingroundarebeingplayedtodecidewhichcountrieswillsendteamstothe201
国际收支包括经常项目和资本项目,一国国际收支顺差过大,会导致
以下叙述中正确的是
IshouldstartbysayingasclearlyasIcanthatIloveantibiotics.RecentlyIhaddinnerwithapediatricianfriend,andshe
ViplangLaunchedin2005,Viplangistheworld’sfirstlanguagelearningapp.Aleaderintheonlinelanguagelearningindus
最新回复
(
0
)