设A,B为满足AB=O的任意两个非零矩阵,则必有( )

admin2019-08-12  40

问题 设A,B为满足AB=O的任意两个非零矩阵,则必有(    )

选项 A、A的列向量组线性相关,B的行向量组线性相关。
B、A的列向量组线性相关,B的列向量组线性相关。
C、A的行向量组线性相关,B的行向量组线性相关。
D、A的行向量组线性相关,B的列向量组线性相关。

答案A

解析 由AB=O知,B的每一列均为Ax=0的解,而B为非零矩阵,即Ax=0存在非零解,可见A的列向量组线性相关。
同理,由AB=O知,BTAT=O,于是有BT的列向量组线性相关,从而B的行向量组线性相关,故选A。
转载请注明原文地址:https://kaotiyun.com/show/e0N4777K
0

最新回复(0)