首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在区间[0,1]上具有2阶导数,f(1)>0,<0,证明: 方程f(x)+f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.
f(x)在区间[0,1]上具有2阶导数,f(1)>0,<0,证明: 方程f(x)+f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.
admin
2017-02-21
32
问题
f(x)在区间[0,1]上具有2阶导数,f(1)>0,
<0,证明:
方程f(x)+f"(x)+[f’(x)]
2
=0在区间(0,1)内至少存在两个不同的实根.
选项
答案
由上可知f(0)=0,ヨξ∈(0,1),使f(ξ)=0,令F(x)=f(x)f’(x),则f(0)=f(ξ)=0,由罗尔定理ヨη∈(0,ξ),使f’(η)=0,则F(0)=F(η)=F(ξ)=0,对F(x)在(0,η),(0,ξ)分别使用罗尔定理: ヨη
1
∈(0,η),η
2
∈(0,ξ),且η
1
,η
2
∈(0,1)η
1
≠η
2
,使得F’(η
1
)=F’(η
2
)=0, 即F’(x)=f(x)f"(x)+(f(x))
2
在(0,1)至少有两个实根.得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/e3u4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
[*]
[*]
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
求点(2,1,0)到平面3x+4y+5z=0的距离.
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
已知二次曲面X2+4y2+3z2+2axy+2xz+2(a一2)yz=1是椭球面,则a的取值为____________.
随机试题
由计算器算得的结果为12.004471,按有效数字运算规则,应将结果修约为()。
有关Coats病的叙述,错误的是
贫血性疾病的治疗包括
A.耐受性B.耐药性C.成瘾性D.习惯性E.快速耐受性长期用药后突然停药发生严重的生理功能紊乱()。
碧海实业有限公司等3家国有企业,拟设立一家以高新技术产业为主的新奇股份有限公司。新奇公司拟筹集股本总额4亿元,其中,发起人碧海公司拟以厂房、设备、专利技术、土地使用权和部分现金作出资,并将成为新奇公司第一大股东。3家发起人为筹办新奇股份公司,共同制订了公司
采用静态评价方法对互斥型投资方案进行经济效果评价,经常不能充分反映( )。
面对一棵大树,一位教授算了两笔不同的账:算法一,一棵正常生长50年的大树,按当时市价计算最高能卖2000元。算法二,从大树生产氧气,减少大气污染,涵养水源,为鸟类与其它动物提供栖息环境的生态效益计算,其价值最低为130万元,该教授的算法二强调了:
在大型项目或多项目实施的过程中,负责实施的项目经理对这些项目大都采用(57)的方式。投资大、建设周期长、专业复杂的大型项目最好采用(58)的组织形式或近似的组织形式。
ReadthefollowingreviewsofabookcalledTheBossesSpeak.Foreachquestion23-28,choosethecorrectanswer.Markl
Forthispart,youareallowed30minutestowriteashortessay.Youshouldstartyouressaywithabriefdescriptionofthepi
最新回复
(
0
)