首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max(X,Y)的分布函数为( ).
[2008年] 设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max(X,Y)的分布函数为( ).
admin
2019-04-15
54
问题
[2008年] 设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max(X,Y)的分布函数为( ).
选项
A、F
2
(x)
B、F(x)F(y)
C、1-[1-F(x)]
2
D、[1-F(x)][1-F(y)]
答案
A
解析
解一 因X与Y同分布,故y的分布函数也是F(x).由命题3.2.5.2(2)知,F
max
(x)=F(x)F(y)=F
2
(x).仅(A)入选.
解二 仅(A)入选.设Z的分布函数为F
Z
(x),则
F
Z
(x)=P(Z≤x)=P(max(X,Y)≤x)=P(X≤x,Y≤x).
因X,Y独立同分布,故
F
Z
(x)=P(X≤x)P(Y≤x)=F(x)F(x)=F
2
(x).
解三 仅(A)入选.因Z的分布函数为一元函数,而非二元函数,故不能选(B)、(D).又因选项(C)为min(X,Y)的分布函数.事实上,有
P(min(X,Y)≤x)=1-P(min(X,Y)>x)=1-P(X>x,Y>x)=1-P(X>x)P(Y>x)
=1-[1-P(X≤x)][1-P(Y≤x)]=1-[1-F(x)][1一F(y)]
=1-[1-F(x)]
2
.
注:命题3.2.5.2 (2)当X
1
,X
2
,…,X
n
相互独立且有相同分布函数F(z)时,有 F
max
(z)=[F(z)]
n
, F
min
(z)=1-[1-F(z)]
n
.
转载请注明原文地址:https://kaotiyun.com/show/e7P4777K
0
考研数学三
相关试题推荐
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
设A,B为n阶矩阵,(1)求P.Q;(2)证明:当P可逆时,Q也可逆.
设η1,…,ηS是非齐次线性方程组AX=b的一组解,则k1η1+…+kSηS,为方程组AX=b的解的充分必要条件是______.
设n阶矩阵A满足A2+A=3E,则(A-3E)-1=______.
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
f(x)在[一1,1]上连续,则x=0是函数g(x)=的().
已知随机变量X的概率密度(Ⅰ)求分布函数F(x)。(Ⅱ)若令Y=F(x),求Y的分布函数FY(y)。
(2016年)设函数y=f(x)在(一∞,+∞)内连续,其导函数的图象如下图所不,则()
若四阶矩阵A与B相似,矩阵A的特征值为,则行列式|B-1一E|=__________。
随机试题
下列行为中构成专利侵权的是()。
从造字法来看,“明”是_____字。
女,65岁,因头痛、右侧肢体无力7天入院。胸片:右肺可见圆形病灶,头部CT提示脑转移瘤,肿瘤周围脑水肿明显。本例瘤周水肿系
某研究者收集了2种疾病患者痰液内嗜酸性粒细胞的检查结果,整理成下表:若要比较2种疾病患者痰液内的嗜酸性粒细胞数是否有差别应选择
在下列关于财务管理“引导原则”的说法中,错误的是()。
关于老年人的权益,尤其是精神方面的保护,最近进行了立法,谈谈对这一问题的看法。
关于香港特别行政区的政府,说法正确的有()。
Whyare"HowTo"booksingreatdemandintheUnitedStates?
Whatistherelationshipbetweenthetwopersons?
A—thechiefcoachB—thechiefrefereeC—thedefenderD—centreforwardE—thesecon
最新回复
(
0
)