首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1,α2,…,αS线性无关的充要条件是( ).
向量组α1,α2,…,αS线性无关的充要条件是( ).
admin
2017-12-31
48
问题
向量组α
1
,α
2
,…,α
S
线性无关的充要条件是( ).
选项
A、α
1
,α
2
,…,α
S
都不是零向量
B、α
1
,α
2
,…,α
S
中任意两个向量不成比例
C、α
1
,α
2
,…,α
S
中任一向量都不可由其余向量线性表示
D、α
1
,α
2
,…,α
S
中有一个部分向量组线性无关
答案
C
解析
若向量组α
1
,α
2
,…,α
s
线性无关,则其中任一向量都不可由其余向量线性表示,反之,若α
1
,α
2
,…,α
s
中任一向量都不可由其余向量线性表示,则α
1
,α
2
,…,α
s
一定线性无关,因为若α
1
,α
2
,…,α
s
线性相关,则其中至少有一个向量可由其余向量线性表示,选(C).
转载请注明原文地址:https://kaotiyun.com/show/2DX4777K
0
考研数学三
相关试题推荐
设λ1,λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1,λn的特征向量,记证明:二次型,(x)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值。
设有3维列向量问λ取何值时β不能由α1,α2,α3线性表示?
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=6的通解X=
设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则下述结论中正确的是
设A为3阶实对称矩阵,且满足条件A2+2A=0,A的秩r(A)=2.当点为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵。
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为证明A+E为正定矩阵,其中E为3阶单位矩阵。
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)T+k2(一1,2,2,1)T。问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解;若没有,则说明理由。
设α1,α2,α3,α4为四维列向量组,且α1,α2,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2,α2+α3,一α1+aα2+α3]X=α4有无穷多解.(1)求a的值;(2)用基础解系表示该方程组的通解.
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为
随机试题
辩护人提出上诉,应当取得
A.脊髓灰质炎疫苗B.卡介苗C.麻疹疫苗D.百白破疫苗E.麻腮风疫苗接种后可获得一定的对抗结核病的疫苗的是()
依据《公路隧道养护技术规范》(JTGH12—2015)对某高速公路隧道进行定期检查,请回答以下问题。可用于隧道衬砌裂缝宽度检测的设备有()。
空间辐射热阻与()无关。
(2006年,2009年)已知级数是收敛的,则下列结果成立的是()。
在Excel中,在记录单的右上角显示“3/30”,其意义是()。
手工锻打改为汽锤锻打后对作业能力的影响并不大,这是因为()。
某次会议,每个与会者均可免费领到一个包或一只手表,但不能二者都领,则可以确定领到手表的人数。(1)在该会议期间,有40%的人领到包;(2)在该会议期间,共分发手表和包200份。
根据我国宪法和法律,下列关于公民财产权的表述,正确的是()。
Thosedaysarelonggonewhenplacingatelephonecallmeantsimplypickingupthereceiverandaskingtheoperatortopatchyou
最新回复
(
0
)