首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。 证明:向量组β,Aβ,A2β线性无关;
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。 证明:向量组β,Aβ,A2β线性无关;
admin
2017-01-16
49
问题
设A为三阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同的特征值,对应的特征向量分别为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
。
证明:向量组β,Aβ,A
2
β线性无关;
选项
答案
设k
1
,k
2
,k
3
是实数,满足k
1
β+k
2
Aβ+k
3
A
2
β=0,根据已知有Aα
i
=λ
i
α
i
,(i=1,2,3),所以 Aβ=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
, 将上述结果代入k
1
β+k
2
Aβ+k
3
A
2
β=0可得 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0。 α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,则三个向量必定线性无关,因此 [*] 由于该线性方程组的系数矩阵的行列式[*]≠0,因此k
1
=k
2
=k
3
=0,故β,Aβ,A
2
β线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/eCu4777K
0
考研数学一
相关试题推荐
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
设f(x)可导,求下列函数的导数:
由Y=lgx的图形作下列函数的图形:
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
求下列已知曲线围成的平面图形绕指定的轴旋转而形成的旋转体的体积:(1)xy=a2,y=0,x=a,x=2a(a>0)绕x轴和y轴;(2)x2+(y-2)2=1,绕x轴;(3)y=lnx,y=0,x=e,绕x轴和y轴;(4)x2+y2=4,
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过Ⅱ表示为b2=________.
随机试题
Whenhethoughtofthepast,mygrandfatherwouldsometimesshowusphotographsofhimselfatschool.Theywerebrownandfaded,
A.有头疽B.附骨疽C.锁喉痈D.瘰疬E.以上都不是
特殊人群高血压的治疗A、α-受体阻断剂(α-RB)B、β-受体阻断剂(β-RB)C、噻嗪类利尿药D、醛固酮受体拮抗剂E、血管紧张素转换酶抑制剂(ACEI)脑血管病病人宜选用的药物是
下列各项中,有关汇票与支票相互区别的表述中正确的有()。
健康保险所承保的疾病风险的特点有()
王某按照某银行支行的业务印章自行制作了一个业务印章,并印制了空白存单,然后制作了一张50万元的银行存单,并以此从另一家银行获得抵押贷款50万元。根据《刑法》的有关规定,有关王某的行为,下列说法正确的有()。
立国之初,明朝统治者就将发展教育事业放在重要地位,于是确立了“______”的文教政策。
堆是一种数据结构,(36)是堆。
Weneedonehundredmoresignaturesbeforewetakethe______tothegovernor.
TheriseandfallofvacationsTheriseTopvacationtime:AugustPaidvacationisa【D1】______.Theappearanceoftheword"vaca
最新回复
(
0
)