首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。 证明:向量组β,Aβ,A2β线性无关;
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。 证明:向量组β,Aβ,A2β线性无关;
admin
2017-01-16
85
问题
设A为三阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同的特征值,对应的特征向量分别为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
。
证明:向量组β,Aβ,A
2
β线性无关;
选项
答案
设k
1
,k
2
,k
3
是实数,满足k
1
β+k
2
Aβ+k
3
A
2
β=0,根据已知有Aα
i
=λ
i
α
i
,(i=1,2,3),所以 Aβ=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
, 将上述结果代入k
1
β+k
2
Aβ+k
3
A
2
β=0可得 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0。 α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,则三个向量必定线性无关,因此 [*] 由于该线性方程组的系数矩阵的行列式[*]≠0,因此k
1
=k
2
=k
3
=0,故β,Aβ,A
2
β线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/eCu4777K
0
考研数学一
相关试题推荐
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
求下列有理函数不定积分:
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
被积函数的分子与分母同乘以一个适当的因式,往往可以使不定积分容易求,用这种方法求下列不定积分:
已知函数y=sinx的图形,作函数y=2sin﹙2x-π/2﹚的图形.
设f(x)可导,求下列函数的导数:
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
随机试题
()是银行各项业务和财务活动原始记录的规格化文件,是办理收、付和记账的依据,是核对账务和事后查考的重要依据。
谈判风格
A.病变以脑底部最明显B.病变以脑顶部最明显C.病变以大脑皮质最明显D.病变以脊髓灰质前角最明显流行性乙型脑炎
病毒中和抗体的主要作用是
电冰箱须凭进口安全质量许可证办理报检手续。( )
理财规划服务设计的内容非常广泛,它包括但不仅限于财务、法律、投资和债务管理、保险、税务等,理财师在相关判断和规划时还要求能够兼顾客户家庭财务、非财务以及不同时期变化的需求。这指的是理财师的什么特征?()
下列各项中,不应计入其他业务成本的有()。
农村居民经批准在户籍所在地按照规定标准占用耕地,建设自用住宅,可以免征耕地占用税。()(2013年)
根据下面材料回答下列题。某省旅游业较为发达,据统计,该省2014年1—2月份接待入境游客45.9万人次,旅游外汇收入2亿美元,同比分别增长11.8%和10.9%,增幅分别比上年同期回落4.7个和16.9个百分点。接待港澳台游客20.7万人次,增长
下列关于紧凑技术的叙述中,哪个是不正确的?
最新回复
(
0
)