首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
f(x)在[1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
admin
2016-10-24
32
问题
f(x)在[1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
选项
答案
由泰勒公式得 [*] 两式相减得f"(ξ
1
)+f"’(ξ
2
)=6.因为f(x)在[一1,1]上三阶连续可导,所以f"’(x)在[ξ
1
,ξ
2
]上连续,由连续函数最值定理,f"’(x)在[ξ
1
,ξ
2
]上取到最小值m和最大值M,故2m≤f"’(ξ
1
)+f"’(ξ
2
)≤2M,即m≤3≤M.由闭区间上连续函数介值定理,存在ξ∈[ξ
1
,ξ
2
][*](一1,1),使得f"’(ξ)=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/eIH4777K
0
考研数学三
相关试题推荐
求下列函数的指定的高阶偏导数:
设常数a>0,则级数().
设f(n)(x。)存在,且f(x。)=fˊ(x。)=…=f(n)(x。)=0,证明f(x)=o[(x-x。)n](x→x。).
求下列函数在指定点Mo处沿指定方向l的方向导数:(1)z=x2+y2,Mo(1,2),l为从点(1,2)到点的方向;(2)z=xexy,Mo(-3,0),l为从点(-3,0)到点(-1,3)的方向;(3)u=xyz,Mo(5,1,2),l=(4,3,
如果f(x)为偶函数,且fˊ(x)存在,证明fˊ(0)=0.
计算曲面积分,∑为抛物面z=2-(x2+y2)在xOy面上方的部分,f(x,y,z)分别如下:(1)f(x,y,z)=1,(2)f(x,y,z)=x2+y2.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
设非齐次线性微分方程yˊ+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().。
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.(φ(2)=0.977,其中φ(x)是标准正态分布函数
设X2,X3,…,Xn(n≥2)为来自总体N(0,1)的简单随机样本,X为样本均值,S2为样本方差,则().
随机试题
求在t=1处的切线方程.
代偿性代谢性酸中毒时
三点校正法测定维生素A时,按照三点波长的选择方法不同又分为
患儿男,11个月,呕吐、腹泻3d住院。大便10~15次/天,蛋花汤样,伴呕吐3~4次,4小时无尿,皮肤弹性差,肢端凉,大便镜检偶见白细胞。护士判断该患儿腹泻的脱水程度是
非存款性负债业务创新包括()。
下列各项中,属于预算特征的有()。
下列关于绩效管理的叙述错误的是()。
南美洲有一种毒箭蛙,其皮肤能分泌出剧毒物质。人们发现它们在水族馆中生活一段时间后,就不再具有毒性,其后代也是如此。后来又发现,自然界中的毒箭蛙以热带蚁类为食,而在水族馆中没有这种昆虫滋生。由此可知()。
想象竞合犯之所以被认为是实质的一罪,是因为
以下关于数据模型的描述中,错误的是
最新回复
(
0
)