首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1,),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1,),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
admin
2017-10-21
69
问题
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ
1
+c
1
η
1
+c
2
η
2
,ξ
1
=(1,0,1,),η
1
=(1,1,0),η
2
=(1,2,1);(Ⅱ)有通解ξ
2
+cη,ξ
2
=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
选项
答案
公共解必须是(Ⅱ)的解,有ξ
2
+cη的形式,它又是(I)的解,从而存在c
1
,c
2
使得ξ
2
+cη=ξ+c
1
η
1
+c
2
η
2
,于是ξ
2
+cη一ξ
1
可用η
1
,η
2
线性表示,即r(η
1
,η
2
,ξ
2
+cη一ξ
1
)=r(η
1
,η
2
)=2. [*] 得到c=1/2,从而(I)和(Ⅱ)有一个公共解ξ
2
+η/2=(1/2,3/2,3).
解析
转载请注明原文地址:https://kaotiyun.com/show/eKH4777K
0
考研数学三
相关试题推荐
设A,B分别为m阶和n阶可逆矩阵,则的逆矩阵为().
设为发散的正项级数,令Sn=a1+a2+…+an(a=1,2,…).证明:收敛.
判断级数的敛散性.
设A为n阶矩阵,A的各行元素之和为0且r(A)=n一1,则方程组AX=0的通解为
证明.当x>0时,
设对一切的x,有f(x+1)=2f(x),且当x∈[0,1]时f(x)=x(x2一1),讨论函数f(x)在x=0处的可导性.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使
求幂级数(|x|<1)的和函数s(x)及其极值.
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解址()
随机试题
在绩效测量指标中,缺陷率、可靠性、反应速度、技术支持等属于()
下列正确的表述是( )。
材料:阳光的香味林清玄我遇见一位年轻的农夫,在南方一个充满阳光的小镇。那时是春末了,
处理好公安机关和()的关系是调整各种社会关系的基础。
甲送给工商局长100万元,让工商局长对自己生产假冒爱马仕皮包的行为睁一只眼闭一只眼。关于本案说法正确的是()
甲为了报复素有矛盾的刘某,捏造刘某贪污的材料向检察机关举报,导致刘某被逮捕。甲的行为构成()(2017年非法学基础课单选第15题)
以下程序的执行结果是()。#include#includevoidfun(intn){if(n!=0){fun(n一1);for(inti=l;i
Whoisthehostoftheprogram?
Youradvicewouldbe____valuabletohim,whoisnowatalossastowhattodofirst.
WhatisthemeasuresuggestedbyPresidentBushtodealwithcrudeoilshortage?
最新回复
(
0
)