首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
一个棱柱的直观图和三视图(主视图和俯视图是边长为a的正方形,左视图是直角边长为a的等腰三角形)如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点。 (1)求证:GN⊥AC; (2)求三棱锥E—FMC的体积; (3)当FG
一个棱柱的直观图和三视图(主视图和俯视图是边长为a的正方形,左视图是直角边长为a的等腰三角形)如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点。 (1)求证:GN⊥AC; (2)求三棱锥E—FMC的体积; (3)当FG
admin
2013-08-29
74
问题
一个棱柱的直观图和三视图(主视图和俯视图是边长为a的正方形,左视图是直角边长为a的等腰三角形)如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点。
(1)求证:GN⊥AC;
(2)求三棱锥E—FMC的体积;
(3)当FG=GD时,证明:AG∥平面FMC。
选项
答案
解:(1)由三视图可知,多面体是直三棱柱, 两底面是直角边长为a的等腰直角三角形, 侧面ABCD,CDFE是边长为a的正方形。 连接DN,因为FD⊥CD,FD⊥AD, 所以,FD⊥面ABCD, ∴FD⊥AC, 又∵AC⊥DN, 所以,AC⊥面GND, GN[299*]面GND, 所以GN⊥AC。 (2)V
E-FMC
=V
ADF-BCE
-V
F-AMCD
-V
E-MBC
=[*] =[*] =[*] 另解:[*]。 (3)连接DE交于FC于Q,连接AG、GQ。 因为G是FD的中点,Q是FC的中点,M是AB的中点。 所以[*], 所以,AM∥GQ,AMGQ是平行四边形, AG∥QM,AG¢面FMC,MQ[*]面FMC, 所以,AG∥平面FMC。
解析
转载请注明原文地址:https://kaotiyun.com/show/eKLq777K
本试题收录于:
小学数学题库教师公开招聘分类
0
小学数学
教师公开招聘
相关试题推荐
两个半元音为______。
太多人急着想要成功,总是希望途中能走捷径。但在现实中,捷径往往只会带来失望而非瞬间成功。长久成功的关键是踏实走好所必须的每一步,而不是敷衍了事。不论你的目标是有关经济的、健康的还是人际关系的,这一点都确凿无疑。
O1和O2的坐标分别为(-1,0)、(2,0),⊙O1和⊙O2的半径分别是2、5,则这两圆的位置关系是()。
如图,⊙O是△ABC的内切圆,与边BC,CA,AB的切点分别为D,E,F,若∠A=70°,则∠EDF=______。
如图,在正△ABC中,D、E分别在AC、AB上,且AE=BE,则有()。
如右图,一次函数y=ax+b的图象与x轴,y轴分别交于A、B两点,与反比例函数的图象相交于C、D两点,分别过C、D两点作y轴、x轴的垂线,垂足为E、F,连接CF、DE、EF.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△D
一名射击运动员连续射靶8次,命中的环数如下:8、9、10、9、8、7、10、8,这名运动员射击环数的众数和中位数分别是().
A、6B、7C、8D、23B先画出不等式组所表示的可行域,让目标函数表示的直线在可行域上平移,得到目标函数在(2,1)处取得最小值。
如果:A=2×2×5,B=2×3×5,那A、B的最大公约数是_______,最小公倍数是_______.
行列式的值为()。
随机试题
关于美金刚的叙述正确的是
(1)试阐述铰链四杆机构的曲柄存在条件;(2)根据图中所注尺寸判断下列铰链四杆机构是曲柄摇杆机构、双曲柄机构、还是双摇杆机构,并说明为什么。
传染病的下列特征中最主要的是()
以下哪种开关不在X线机控制台上使用
胎盘剥离征象的表现为
下列对调解的说法错误的是()。
传说中的五帝是指()。
当Windows系统运动速度减慢时,用户经常被建议减少系统占用的硬盘空间。为实现这一目的所采取的下列方法中,错误的是()。
两个球队对抗了很长时间,最后踢成了一比一。
InShanghai,agrowingnumberofforeign-fundedbanksarelookingforlocalpeopletofillexecutivepositions(行政主管的岗位)rathert
最新回复
(
0
)