首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式 f′(x)+f(x)一f(t)dt=0. (1)求导数f′(x); (2)证明:当x≥0时,成立不等式e-x≤f(x)≤1.
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式 f′(x)+f(x)一f(t)dt=0. (1)求导数f′(x); (2)证明:当x≥0时,成立不等式e-x≤f(x)≤1.
admin
2016-01-25
50
问题
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式
f′(x)+f(x)一
f(t)dt=0.
(1)求导数f′(x);
(2)证明:当x≥0时,成立不等式e
-x
≤f(x)≤1.
选项
答案
(1)整理后有等式 (x+1)f′(x)+(x+1)f(x)一[*]f(t)dt=0, 求导得到 (x+1)f″(x)+(x+2)f′(x)=0. 设 u(x)=f′(x), 则 [*] 两边积分得到 lnu(x)=一x—ln(x+1)+lnC,u(x)=[*] 即 [*] (2)由 f′(x)=一[*]e
-x
① 且 x≥0, 则有不等式 一e
-x
≤一[*]e
-x
≤0 两边在[0,x]上积分,利用式①有 e
-x
一1≤f(x)一f(0)≤0, 即有不等式 e
-x
≤f(x)≤1.
解析
先在所给等式两边求导得到f(x)的二阶微分方程.为求f′(x),视f′(x)为因变量,化为一阶微分方程而求之.求出f′(x)的表示式后再放缩化为不等式,最后积分即可得到f(x)的不等式.
转载请注明原文地址:https://kaotiyun.com/show/eKU4777K
0
考研数学三
相关试题推荐
“天下之事,不难于立法,而难于法之必行。”法律的生命力在于实施,法律的权威也在于实施。严格执法的目标是
在对资本主义工商业改造的公私合营阶段,和平赎买的形式是()。
记者在采访2015年诺贝尔生理学或医学奖的中国女药学家屠呦呦时问她:“你在小鼠和猴子身上测试了青蒿素,证明它是有效的之后,你自己也服了药。你害怕吗?”屠呦呦答:“我们担心药物是否安全。我和两位同事服了药,表明药不会死人。我认为这是我作为药物化学家的责任和工
习近平总书记多次强调增强辩证思维能力的重要性,明确指出“辩证唯物主义是中国共产党人的世界观和方法论”。习近平同志在2019年4月22日上午主持召开中央财经委员会第四次会议时指出,经过几代人接续奋斗,总体而言,我国已经基本实现全面建成小康社会目标。目前,全面
判断下列级数的敛散性
求幂级数的收敛区间,并讨论该区间端点处的收敛性.
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
(1)如果点P(x,y)以不同的方式趋于Po(xo,yo)时,f(x,y)趋于不同的常数,则函数f(x,y)在po(xo,yo)处的二重极限____________.(2)函数f(x,y)在点(xo,yo)连续是函数在该点处可微分的___________
题设所给变上限定积分中含有参数x,因此令u=2x-t,则du=-dt,[*]
求函数y=(x-1)eπ/2+arctanx的单调区间和极值,并求该函数图形的渐近线.
随机试题
Myteacher______metospeakEnglish.
1997年2月,国航财务公司与华诚财务公司签订一份资金拆借合同,约定:华诚财务公司从国航财务公司拆借人民币1500万元,并约定了还款期限及利息等。在拆借合同到期后,华诚财务公司偿还了部分本息,但尚有1395万元未还。故国航财务公司向人民法院提起诉讼,请求判
公司财产能够清偿公司债务的,分别支付(),缴纳所欠税款,清偿公司债务。
我国现行宪法序言规定,我国的强国之路是()。
组织动态平衡最关键的是解决()矛盾。
不允许其他事务对这个锁定目标再加上任何类型锁的锁是______。
有下面程序代码:PrivateSubCommand1_Click()DimxAsIntegersAsIntegerx=1Fork=1To3x=x+1:procX:s=s+xNextkPrintsEndSub
在定义一个类模板时,模板形参表是用一对括号括起来的,所采用的括号是()。
Herejectedmyrequestwithan______shakeofhishead.
AstudyconductedbyanAustralianscienceagencyhasdiscoveredsignsthatthecountry’sancientAboriginesmayhavebeenthew
最新回复
(
0
)