首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式 f′(x)+f(x)一f(t)dt=0. (1)求导数f′(x); (2)证明:当x≥0时,成立不等式e-x≤f(x)≤1.
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式 f′(x)+f(x)一f(t)dt=0. (1)求导数f′(x); (2)证明:当x≥0时,成立不等式e-x≤f(x)≤1.
admin
2016-01-25
40
问题
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式
f′(x)+f(x)一
f(t)dt=0.
(1)求导数f′(x);
(2)证明:当x≥0时,成立不等式e
-x
≤f(x)≤1.
选项
答案
(1)整理后有等式 (x+1)f′(x)+(x+1)f(x)一[*]f(t)dt=0, 求导得到 (x+1)f″(x)+(x+2)f′(x)=0. 设 u(x)=f′(x), 则 [*] 两边积分得到 lnu(x)=一x—ln(x+1)+lnC,u(x)=[*] 即 [*] (2)由 f′(x)=一[*]e
-x
① 且 x≥0, 则有不等式 一e
-x
≤一[*]e
-x
≤0 两边在[0,x]上积分,利用式①有 e
-x
一1≤f(x)一f(0)≤0, 即有不等式 e
-x
≤f(x)≤1.
解析
先在所给等式两边求导得到f(x)的二阶微分方程.为求f′(x),视f′(x)为因变量,化为一阶微分方程而求之.求出f′(x)的表示式后再放缩化为不等式,最后积分即可得到f(x)的不等式.
转载请注明原文地址:https://kaotiyun.com/show/eKU4777K
0
考研数学三
相关试题推荐
结合材料回答问题:党的十八大以来,以习近平同志为核心的党中央坚持观大势、谋全局、干实事,成功驾驭我国经济发展大局,在实践中形成了以新发展理念为主要内容的习近平新时代中国特色社会主义经济思想,为新时代中国特色社会主义经济建设提供了根本遵循。突如其来
农产品直播是一种新型销售手段,如今已经成为销售农产品的主要途径之一。在一些经济落后、交通不便的地区,农产品直播不仅解决了农产品的销路问题,而且随着产品的热卖,促进了产业链的完善,创造了更多的就业岗位,外出务工人员也纷纷回到了家乡,解决了农村发展空巢化的问题
有很多民谚、俗语都体现了因果关系,例如“无风不起浪”“种因得果,因果循环”等。下列关于原因和结果的说法,正确的是
中共中央总书记、国家主席、中央军委主席习近平4月8日给武汉市东湖新城社区全体社区工作者回信,再次肯定城乡广大社区工作者在疫情防控斗争中发挥的重要作用,向他们致以诚挚的慰问,并勉励他们为彻底打赢疫情防控人民战争、总体战、阻击战再立新功。 习近平在回信中说
材料1 (1)没收一切土地归苏维埃政府所有,分配农民个别耕种。(2)一切土地,经苏维埃政府没收并分配后,禁止买卖。(3)分配土地后,除老幼疾病没有耕种能力及服务与公众勤务这以外,其余的人必须强制劳动。(4)以人口为标准分配土地。男女老幼平均分配。(5)
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
求常数a、b、c的值,使函数f(x,y,z)=axy2+byz+cx3z2在点(1,-1)处沿z轴正方向的方向导数成为各方向的方向导数中的最大者,且此最大值为6
设f(x),g(x)在[-a,a]上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(Ⅰ)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(Ⅱ)利用(Ⅰ)的结论计算定积分∫π/2-π/2|sinx|arctane
随机试题
下列选项中属于“21世纪人人享有卫生保健”的总目标的是()
与五脏开窍有错误的是
A.溃疡呈环形与肠的长轴垂直B.溃疡呈长椭圆形与肠的长轴平行C.溃疡呈烧瓶状口小底大D.溃疡边缘呈堤状隆起E.溃疡表浅呈地图状肠伤寒的肠溃疡特征
排烟管道上需要设置几个排烟阀?
()是利用两根桅杆组成的门式吊推器的回转、滑移等动作,用桅杆使设备绕支撑铰链回转,同时桅杆根部沿地面滑道平移,使设备或构件从水平位置回转到垂直安装位置。
自设实验室进行试验所耗用的材料等费用属于()。
量化交易的特点不包括()。
下列诗句描写的是夏天景色的是()。
16年前,美国青年丁大卫来到中国一所郊区小学教书。因为他的课很受老师和学生的喜欢,后来当上了校长。1998年他又去了西部,在兰州的一所大学当教师。现在他在西部的一个县教育局当教育顾问。★丁大卫刚来中国时做什么工作?
A、TheBookCriticsCircleAward.B、TheNobelPrizeforliterature.C、ThePulitzerPrizeforfiction.D、TheNationalBookAward.
最新回复
(
0
)