首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式 f′(x)+f(x)一f(t)dt=0. (1)求导数f′(x); (2)证明:当x≥0时,成立不等式e-x≤f(x)≤1.
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式 f′(x)+f(x)一f(t)dt=0. (1)求导数f′(x); (2)证明:当x≥0时,成立不等式e-x≤f(x)≤1.
admin
2016-01-25
91
问题
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式
f′(x)+f(x)一
f(t)dt=0.
(1)求导数f′(x);
(2)证明:当x≥0时,成立不等式e
-x
≤f(x)≤1.
选项
答案
(1)整理后有等式 (x+1)f′(x)+(x+1)f(x)一[*]f(t)dt=0, 求导得到 (x+1)f″(x)+(x+2)f′(x)=0. 设 u(x)=f′(x), 则 [*] 两边积分得到 lnu(x)=一x—ln(x+1)+lnC,u(x)=[*] 即 [*] (2)由 f′(x)=一[*]e
-x
① 且 x≥0, 则有不等式 一e
-x
≤一[*]e
-x
≤0 两边在[0,x]上积分,利用式①有 e
-x
一1≤f(x)一f(0)≤0, 即有不等式 e
-x
≤f(x)≤1.
解析
先在所给等式两边求导得到f(x)的二阶微分方程.为求f′(x),视f′(x)为因变量,化为一阶微分方程而求之.求出f′(x)的表示式后再放缩化为不等式,最后积分即可得到f(x)的不等式.
转载请注明原文地址:https://kaotiyun.com/show/eKU4777K
0
考研数学三
相关试题推荐
从古至今,华夏大地多灾多难,饱经兴衰危亡,中国人早就深刻认识到,团结一致才能渡尽劫波。从“大道之行也,天下为公”,到“人生不能无群”,再到“国而忘家,公而忘私”,无不强调集体主义精神。下列对于集体主义的正确理解是
思想道德和法律在调节社会方面都具有重要作用,但是二者各有各的边界,道德是道德,法律是法律,二者是两个完全不同的范畴。思想道德和法律的区别主要在于
五四运动发生的时代条件和历史条件是()。
“能战方能止战,准备打才可能不必打,越不能打越可能挨打”,把人民军队全面建成世界一流军队。必须牢固树立唯一的根本的标准是()。
全面建成小康社会标志着我们跨过了实现现代化建设第三步战略目标必经的承上启下的重要发展阶段。全面小康有更高的标准、更丰富的内涵、更全面的要求,即经济更加发展、民主更加健全、科教更加进步、文化更加繁荣、社会更加和谐、人民生活更加殷实。全面小康要求(
马克思曾经说过:“作为确定的人,现实的人,你就有规定,就有使命,就有任务,至于你是否意识到这一点,那都是无所谓的。这个任务是由于你的需要及其与现存世界的联系而产生的。”当代大学生承担的历史使命是()。
有k个坛子,每一个装有n个球,分别编号为1至n,今从每个坛子中任取一球,求m是所取的球中的最大编号的概率.
设A,B是同阶正定矩阵,则下列命题错误的是().
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设水以常速(即单位时间注入的水的体积为常数)注入图2.7所示的罐中,直至将水罐注满.画出水位高度随时问变化的函数y=y(t)的图形(不要求精确图形,但应画出曲线的凹凸方向并表示出拐点).
随机试题
徐志摩《再别康桥》的诗性美感主要体现在
女,30岁,三年前结婚后经常发生腰痛,尿急、尿频、尿痛,并有发热而就诊。确诊为泌尿系统感染所致,其最常见的病原菌是
葛根黄芩黄连汤的药物组成是
哮喘发作时,对缓解支气管痉挛作用最快的是
下列有关教学评价的叙述中,阐述最恰当的一项是()。
研究有关公安工作的方针、政策,制定公安法制工作总体规划属于()。
大脑对生物钟的反应大概可以分为两种:“严格听话型”和“不管不问型”。大脑皮层下的区域,包括中脑和丘脑等结构就属于前者——它们是生物钟的忠实哨兵,无论睡没睡好,活跃程度都还能与生物钟节律保持一致。而大脑皮层的大部分区域,比如前额皮质等,它们就不大买生物钟指令
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
I’llgotoShanghai______amonth’stime.
Itisallverywelltoblametrafficjams,thecostofpetrolandthequickpaceofmodernlife,butmannersontheroadsarebec
最新回复
(
0
)