首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2. (1)求参数c及此二次型对应矩阵的特征值. (2)指出方程f(x1,x2,x3)=1表示何种二次曲面.
已知二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2. (1)求参数c及此二次型对应矩阵的特征值. (2)指出方程f(x1,x2,x3)=1表示何种二次曲面.
admin
2020-09-25
108
问题
已知二次型f(x
1
,x
2
,x
3
)=5x
1
2
+5x
2
2
+cx
3
2
一2x
1
x
2
+6x
1
x
3
—6x
2
x
3
的秩为2.
(1)求参数c及此二次型对应矩阵的特征值.
(2)指出方程f(x
1
,x
2
,x
3
)=1表示何种二次曲面.
选项
答案
(1)二次型矩阵A=[*]作初等变换 [*] 因R(A)=2,所以c=3.这时|λE一A|=[*]=λ(λ一4)(λ一9), 故所求特征值为λ=0,λ=4,λ=9. (2)由(1)可知f(x
1
,x
2
,x
3
)=1经过正交变换后将化为4y
2
2
+9y
3
2
=1.又经过非退化线性变换不改变空间曲面的类型,因此f(x
1
,x
2
,x
3
)=1为椭圆柱面.
解析
转载请注明原文地址:https://kaotiyun.com/show/ePx4777K
0
考研数学三
相关试题推荐
设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A*B-1|=_______.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
(15年)设随机变量X的概率密度为对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y为观测次数.(Ⅰ)求Y的概率分布;(Ⅱ)求EY.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
(11年)设函数f(χ)在区间[0,1]上具有连续导数,f(0)=1,且满足f′(χ+y)dχdy=f(t)dχdy,其中Dt={(χ,y)|0≤y≤t-χ,0≤χ≤t)(0<t≤1).求f(χ)表达式.
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
计算二重积分其中D是由直线x=-2,y=0,y=2以及曲线所围成的平面区域.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设四阶方阵A的秩为2,则其伴随矩阵A*的秩为_____________.
设某酒厂有一批新酿的好酒,如果现在(假定t=0)就售出,总收入为假定银行的年利润为r,并以连续复利计息.试求窖藏多少年售出可使总收入的现值最大,并求r=0.06时的t值.
随机试题
成人高等学校的目标是培训()
A.间歇性跛行B.“5P”征C.(指)趾端发黑、干性坏疽、溃疡形成D.股白肿急性全下肢深静脉血栓形成的临床表现
70号道路石油沥青的密度试验结果如下,针对沥青密度试验回答下列问题:沥青密度试验结果有误的是()。
影响沥青混合料施工和易性的首要因素是施工条件的控制。()
预付货款不多的企业,可以不单独设置“预付账款”账户,将预付的货款直接记入()的借方。
甲、乙、丙、丁四人共同投资设立A普通合伙企业,下列关于四人出资的说法中,错误的是()。
(2018年)2017年1月1日,甲公司以银行存款5700万元自非关联方取得乙公司80%的有表决权的股份,对乙公司进行控制。本次投资前,甲公司不持有乙公司股份且与乙公司不存在关联方关系。甲公司、乙公司的会计政策和会计期间相一致。资料一:2017年1月1
阅读材料,回答下列问题。根据流程图,指出捕捉与利用学生资源要经历哪几个环节。
李某因诈骗罪被判处有期徒刑2年,缓刑3年。缓刑考验期满后,司法机关查获李某在缓刑考验期内,曾经伙同他人盗窃财物价值达3万元,对李某应当如何处理?()
经济优势往往造就文化强势,文化强势则借助经济优势向经济相对落后的地区辐射,这是文化传播的一个规律。在这一过程中,会存在泥沙俱下的问题,把一些不好的东西也学了过来。根据这段话,可以知道()。
最新回复
(
0
)