首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A的各行元素之和为0且r(A)=n一1,则方程组AX=0的通解为________.
设A为n阶矩阵,A的各行元素之和为0且r(A)=n一1,则方程组AX=0的通解为________.
admin
2016-10-23
22
问题
设A为n阶矩阵,A的各行元素之和为0且r(A)=n一1,则方程组AX=0的通解为________.
选项
答案
[*](其中是为任意常数).
解析
因为A的各行元素之和为零,所以
=0,又因为r(A)=n一1,所以
为方程组AX=0的基础解系,从而通解为
(其中是为任意常数).
转载请注明原文地址:https://kaotiyun.com/show/eZT4777K
0
考研数学三
相关试题推荐
一辆飞机场的交通车载有25名乘客,途经9个站,每位乘客都等可能在9个站中任意一站下车,交通车只在有乘客下车时才停车,求下列各事件的概率:(1)交通车在第i站停车;(2)交通车在第i站和第j站至少有一站停车;(3)交通车在第i站
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
两封信随机地投入4个邮筒,求前两个邮筒没有信的概率及第一个邮筒恰有一封信的概率.
求下列初值问题的解:(1)y〞-3yˊ+2y-1,y|x=0=2,yˊ|x=0=2;(2)y〞+y+sin2x=0,y|x=π=1,yˊ|x=π=1;(3)y〞-yˊ=2(1-x),y|x=0=1,yˊ|x=0=1;(4)y〞+y=ex+cosx,
试求下列微分方程在指定形式下的解:(1)y〞+3yˊ+2y=0,形如y=erx的解;(2)x2y〞+6xyˊ+4y=0,形如y=xλ的解.
(1)证明三个向量共面的充要条件是其中一个向量可以表示为另两个向量的线性组合.(2)设a=(ax,ay,az),b=(b,by,bz),且a×b≠0,证明:过点Mo(x,yo,zo),并且以a×b为法向的平面具有如下形式的参数方程:
试确定下面哪个函数是哪个方程的解:(1)y〞=2yˊ+y=0;(i)y=y(x)由方程x2-xy+y2=1所确定的隐函数;(2)(x-2y)yˊ=2x-3,;(ii)y=xex;(3)(1十xy)yˊ+y2=0;(iii)y=y(x)
A是n阶矩阵,且A3=0,则().
差分方程3yx+1-2yx=0的通解为_______.
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|x|<x}=α,则x等于().
随机试题
存储1024个24×24点阵的汉字字形码需要的字节数是()。
大拉翅是唐代中期典型发型之一。()
实施科教兴国战略的措施()
下列可出现呼气性呼吸困难的是
下列单位或个人不属于我国城市维护建设税的纳税人的是( )。
敏敏每次做完题总是会一遍又一遍地检查,她自己也知道没必要,但却没办法控制自己,这说明敏敏可能患有()。
下面句子中,有错误的一句是:
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,,证明:方程f(x)f”(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同实根.
软件详细设计产生的图如下:该图是()。
Wewerelateas【C1】______.Myhusbandhadinsistedondoinghis【C2】______byhimself,andwhenhediscoveredthathecouldn’t【C
最新回复
(
0
)