首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,一1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,一2,2,0),α5= (2,1,5,1 0). ①求r(α1,α2,α3,α4,α5). ②求一个最大线性无关组,并且把其余向量用它线性表示.
设α1=(1,一1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,一2,2,0),α5= (2,1,5,1 0). ①求r(α1,α2,α3,α4,α5). ②求一个最大线性无关组,并且把其余向量用它线性表示.
admin
2017-10-21
76
问题
设α
1
=(1,一1,2,4),α
2
=(0,3,1,2),α
3
=(3,0,7,14),α
4
=(1,一2,2,0),α
5
=
(2,1,5,1 0).
①求r(α
1
,α
2
,α
3
,α
4
,α
5
).
②求一个最大线性无关组,并且把其余向量用它线性表示.
选项
答案
①构造矩阵A=(α
1
T
,α
2
T
,α
3
T
,α
4
T
,α
5
T
),并对它作初等行变换: [*] 记B和C分别是中间的阶梯形矩阵和右边的简单阶梯形矩阵.B有3个非零行,则r(α
1
,α
2
,α
3
,α
4
,α
5
)=3. ②B的台角在1,2,4列,则α
1
,α
2
,α
4
是α
1
,α
2
,α
3
,α
4
,α
5
的一个最大无关组.设C的列向量组为γ
1
,γ
2
,γ
3
,γ
4
,γ
5
,则α
1
,α
2
,α
3
,α
4
,α
5
和γ
1
,γ
2
,γ
3
,γ
4
,γ
5
有相同线性关系. 显然γ
3
=3γ
1
+γ
2
,γ
5
=2γ
1
+γ
2
,于是α
3
=3α
1
+α
2
,α
5
=2α
1
+α
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/epH4777K
0
考研数学三
相关试题推荐
设α1,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β一αm线性无关.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设A是n阶正定矩阵,证明:|E+A|>1.
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设的逆矩阵A—1的特征向量.求x,y,并求A—1对应的特征值μ.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
参数a取何值时,线性方程组有无穷多个解?求其通解.
求方程组的通解.
设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
随机试题
西汉时期,强调“独尊儒术”的是()
低钾血症与高钾血症相同的表现是
下列药中糖尿病人服用无禁忌的是
滑升模板施工高层建筑物时,现浇楼板的浇筑方法有以下()几种。
申请《建设工程规划许可证》时,开发商需持由城市建设主管部门发下的()。
起重机吊装工艺计算书的主要内容包括()。
三音跳进是指两个________度关系的三和弦做和声连接时,由前一个和弦的三音跳进到另一个和弦的三音,三音跳进时常发生在高音声部与________。
基于题干,回答问题在某一汽车展览中,汽车在一座三层楼的一到三层内展出。每层楼内的汽车要么全是家用车,要么全是跑车;要么全部是新车,要么全部是二手车;要么全部是产品车,要么全部都是研究用车。该展览遵从以下条件:(1)若该展览中既包括家用车又包括跑车,
设A,B为n阶矩阵,证明:当P可逆时,Q也可逆.
PPP协议运行在OSI的___________。
最新回复
(
0
)