首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,β+α3,…,β+αt线性无关。
设α1,α2,α3,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,β+α3,…,β+αt线性无关。
admin
2021-11-25
32
问题
设α
1
,α
2
,α
3
,…,α
t
为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α
1
,β+α
2
,β+α
3
,…,β+α
t
线性无关。
选项
答案
方法一 由α
1
,α
2
,α
3
,…,α
t
线性无关→β,α
1
,α
2
,α
3
,…,α
t
线性无关 令kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+k
3
(β+α
3
)+…+k
t
(β+α
t
)=0 即(k+k
1
+...+k
t
)β+k
1
α
1
+k
2
α
2
+...+k
t
α
t
=0 ∵β,α
1
,α
2
,α
3
,…,α
t
线性无关, ∴[*]→k=k
1
=...=k
t
=0 ∴β,β+α
1
,β+α
2
,β+α
3
,…,β+α
t
线性无关。 方法二 令kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+k
3
(β+α
3
)+…+k
t
(β+α
t
)=0 (k+k
1
+...+k
t
)β=-k
1
α
1
-...-k
t
α
t
(k+k
1
+...+k
t
)Aβ=-k
1
Aα
1
-...-k
t
Aα
t
=0 ∵Aβ≠0,∴k+k
1
+...+k
t
=0, ∴k
1
α
1
+...+k
t
α
t
=0 →k=k
1
=...=k
t
=0 所以β,β+α
1
,β+α
2
,β+α
3
,…,β+α
t
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/epy4777K
0
考研数学二
相关试题推荐
极限=_________.
由题设,需补充f(x)在x=1处的定义.[*]
设A是3阶矩阵,有特征值λ1≠λ2≠λ3,则B=(λ1E-A)(A2E—A)(λ2E-A)(λ3E-A)=_______.
设f(u)具有二阶连续导数,且g(x,y)=
方程y’’一3y’+2y=ex+1+excos2x的特解形式为()
比较下列积分值的大小:Ji=e-(x2+y2)dxdy,i=1,2,3,其中D1={x,y)|x2+y2≤R2},D2={(x,y)|x2+y2≤2R2},D3={(x,y)||x|≤R,|y|≤R}.则J1,J2,J3之间的大小顺序为
设X1,X2,…,Xn相互独立同分布,每个分布函数均为F(x),记X=min(X1,…,Xn),Y=max(X1,…,Xn),则(X,Y)的分布函数F(x,y)当y>x时在(x,y)处的值为()
设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2一x垂直,则当△x→0时,该函数在x=x0处的微分dy是()
函数z=f(x,y)在点(x。,y。)处可微的充分条件是[].
考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。则有()
随机试题
遗传性血管性水肿属于
A.志贺菌属B.奈瑟菌属C.沙门菌属D.埃希菌属E.弧菌属痢疾杆菌属
甲将乙赠与给自己的乙所画的画中的署名刮去,盖上自己的印章,并将画悬挂于自己厅堂。则甲侵害了乙的()。
各项施工现场管理制度应有文明施工的规定,包括()。
(用户名:15;账套:201;操作日期:2013年1月31日)查询“应收账款(1122)”的客户科目余额表。
集资诈骗罪区别于非法集资等行为的重要特征在于()。
编制数量指标指数一般是采用()做同度量因素。
一天中午,某幼儿园中班的大部分幼儿都睡着了,还有个别幼儿没睡,这时值班教师荀老师便到别的班去倒开水,并聊了一会儿。待她回班后,发现一名幼儿头部红肿,问其原因,才知刚才荀老师外出后,他在床上玩耍,不小心摔伤的。荀老师赶忙帮幼儿揉了揉,便安慰他睡了觉。下午当家
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分.D.条件(1)充分,条件(2)也充分.E.条件(1)和条件(2)单独都不充分,条件(1)和条件
Atpresent,althoughsciencehasbeendevelopingatahighspeed,peoplestillhaveahighopinionofartistssuchasmusicians,
最新回复
(
0
)