首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,β+α3,…,β+αt线性无关。
设α1,α2,α3,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,β+α3,…,β+αt线性无关。
admin
2021-11-25
30
问题
设α
1
,α
2
,α
3
,…,α
t
为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α
1
,β+α
2
,β+α
3
,…,β+α
t
线性无关。
选项
答案
方法一 由α
1
,α
2
,α
3
,…,α
t
线性无关→β,α
1
,α
2
,α
3
,…,α
t
线性无关 令kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+k
3
(β+α
3
)+…+k
t
(β+α
t
)=0 即(k+k
1
+...+k
t
)β+k
1
α
1
+k
2
α
2
+...+k
t
α
t
=0 ∵β,α
1
,α
2
,α
3
,…,α
t
线性无关, ∴[*]→k=k
1
=...=k
t
=0 ∴β,β+α
1
,β+α
2
,β+α
3
,…,β+α
t
线性无关。 方法二 令kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+k
3
(β+α
3
)+…+k
t
(β+α
t
)=0 (k+k
1
+...+k
t
)β=-k
1
α
1
-...-k
t
α
t
(k+k
1
+...+k
t
)Aβ=-k
1
Aα
1
-...-k
t
Aα
t
=0 ∵Aβ≠0,∴k+k
1
+...+k
t
=0, ∴k
1
α
1
+...+k
t
α
t
=0 →k=k
1
=...=k
t
=0 所以β,β+α
1
,β+α
2
,β+α
3
,…,β+α
t
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/epy4777K
0
考研数学二
相关试题推荐
[*]
=__________。
[*]
设函数f(χ)在[0,+∞)上可导,f(0)=0且存在反函数,其反函数为g(χ).若∫0f(χ)g(t)dt+∫1χf(t)dt=χeχ-eχ+1,求f(χ).
设f(x,y)在点(0,0)的某邻域内连续,且满足则函数f(x,y)在点(0,0)处().
已知摆线的参数方程为其中0≤t≤2π,常数a>0.设该摆线一拱的弧长的数值等于该弧段绕x轴所围成的旋转曲面面积的数值.求a的值.
设则I,J,K的大小关系为()
当x→0时,无穷小量α=x2与的关系是[].
已知a1=[1,3,5,一1]T,a2=[2,7,a,4]T,a3=[5,17,一1,7]T.(Ⅰ)若a1,a2,a3线性相关,求a的值;(Ⅱ)当a=3时,求与a1,a2,a3都正交的非零向量a4;
设实对称矩阵,求可逆矩阵P,使P-1AP为对角形矩阵,并计算行列式丨A-E丨的值.
随机试题
A.<100μmB.<200μmC.200μm~1mmD.>1mmE.<10nm153Sm发射的13射线的射程是
患者,男性,73岁,河南林县人。因食管癌入院手术治疗,查体:身高1.75m,体重50kg,脉搏85次/分,呼吸18次/分,既往吸烟50年,平时喜食腌制食品。有一兄因食管癌去世。食管癌的好发部位为
后张法预应力孔道灌浆应()。
屋面女儿墙、变形缝处的防水层泛水高度最低应为()mm。
下列关于车船税的规定不正确的有()。
下列关于回收站的描述正确的有()。
去年1月份,该市进出口贸易总值为()。根据原文,以下描述不正确的是()。
大城市的公共交通部门正在赤字中挣扎。乘客总抱怨汽车晚点和运输工具出毛病,服务种类的减少,以及票价高于他们过去习惯于支付的水平。由于上述所有原因,以及汽油的价格并未高至令人不敢问津的水平,所以公共交通车的乘客有所减少,更进一步增加了赤字。下面哪一项关
下列属于刑法的任务的是()
[*]由于并注意到因此于是
最新回复
(
0
)