首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f”(ξ)=0.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f”(ξ)=0.
admin
2019-08-06
68
问题
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f
2
(0)+[f’(0)]
2
=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f”(ξ)=0.
选项
答案
由拉格朗日中值定理有 f(0)一f(-2)=2f’(ξ
1
),一2<ξ
1
<0, f(2)-f(0)=2f’(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知|f’(ξ
1
)|=[*] 令φ(x)=f
2
(x)+[f’(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在点ξ∈(ξ
1
,ξ
2
)[*](一2,2)处取到,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有φ’(ξ)=0,即 2f(ξ).f’(ξ)+2f’(ξ).f"(ξ)=0. 因为|f(x)|≤1,且φ(ξ)≥4,所以f’(ξ)≠0,于是有f(ξ)+f"(ξ)=0,ξ∈(一2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/ewJ4777K
0
考研数学三
相关试题推荐
设三阶矩阵A的特征值为λ1=-1,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=______.
设f(x)二阶连续可导,且=______.
设随机变量X,Y相互独立,且又设向量组α1,α2,α3线性无关,求α+α2,α2+Xα3,Yα1线性相关的概率.
设有微分方程y’一2y=φ(x),其中φ(x)=试求:在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设随机变量X服从标准正态分布N(0,1),令Y=|X|,求Y的概率密度.
将三封信随机地投入编号为1,2,3,4的四个邮箱,求没有信的邮箱数X的概率函数.
计算二重积分ydσ,其中D是两个圆:x2+y2≤1与(x一2)2+y2≤4的公共部分.
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
设A,B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则
随机试题
沸水旺火,超过100℃的高温,可保持菜肴形状完整、原汁原味、鲜香软嫩的烹调方法是_______。
物价水平会计报表
对正中神经的叙述,错误的是()
服用某些磺胺药时,为什么须同服碳酸氢钠并多饮水?
关于动脉内溶栓,叙述不正确的是
男性,30岁,右侧甲状腺单发结节,质硬,生长迅速,近一周伴声音嘶哑,ECT示右甲状腺冷结节如未能确诊,拟行手术,应采用何种术式
下列各项中,属于检查性控制的有()。
下列各句中,有错别字的一项是()。
Aswithlogicalaccesscontrols,auditlogsshouldbeproducedandmonitoredforphysicalaccesscontrols.Whichofthefollowin
UniversitiesBranchOutFromtheirstudentbodiestotheirresearchpractices,universitiesarebecomingmoreglobal.
最新回复
(
0
)