首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f”(ξ)=0.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f”(ξ)=0.
admin
2019-08-06
74
问题
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f
2
(0)+[f’(0)]
2
=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f”(ξ)=0.
选项
答案
由拉格朗日中值定理有 f(0)一f(-2)=2f’(ξ
1
),一2<ξ
1
<0, f(2)-f(0)=2f’(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知|f’(ξ
1
)|=[*] 令φ(x)=f
2
(x)+[f’(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在点ξ∈(ξ
1
,ξ
2
)[*](一2,2)处取到,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有φ’(ξ)=0,即 2f(ξ).f’(ξ)+2f’(ξ).f"(ξ)=0. 因为|f(x)|≤1,且φ(ξ)≥4,所以f’(ξ)≠0,于是有f(ξ)+f"(ξ)=0,ξ∈(一2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/ewJ4777K
0
考研数学三
相关试题推荐
设三阶矩阵A的特征值为λ1=-1,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=______.
设随机变量X满足|X|≤1,且,在{-1<X<1}发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
设对任意的参数λ,讨论级数的敛散性,并证明你的结论.
设C1和C2是两个任意常数,则函数y=ex(C1cos2x+C2sin2x)+sinx是二阶常系数线性微分方程()的通解.
设随机变量X服从标准正态分布N(0,1),令Y=|X|,求Y的概率密度.
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
将三封信随机地投入编号为1,2,3,4的四个邮箱,求没有信的邮箱数X的概率函数.
求证:ex+e-x+2cosx=5恰有两个根.
口袋内有四个同样的球,分别标有号码1,2,3,4.每次从中任取一个球(每次取后放回去),连续两次.如果第i次取到球上的编号记为ai,i=1,2,记事件A表示事件“a1≥4a2”,则该试验的样本空间Ω=___________;事件A=___________;
设有两箱同种零件:第一箱内装50件,其中10件一等品;第二箱内装30件,其中18件一等品.现从两箱中随机挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回).试求(1)先取出的零件是一等品的概率p;(2)在先取出的是一等品的
随机试题
关于屋面卷材防水施工要求的说法,下列正确的有()。
急性髓细胞白血病M0型与M1型的主要区别为
下列关于食管癌x线钡剂造影的叙述,错误的是
题20图所示电路中,开关S闭合前电路已处于稳态,t=0时开关S闭合。开关闭合后的UC(t)为()。
(操作员:李主管;账套:501账套;操作日期:2014年1月31日)在“管理人员”工资表中,录入以下员工的考勤数据。
“双峰”监管型,澳大利亚和美国是这种模式的代表。()
劳动技能、劳动责任和社会心理要素的岗位评价指标,属于()。
A、 B、 C、 D、 A前两个图形相叠加,两个黑球转换成一个椭圆,两个椭圆转换成一个黑球,单个黑球或者单个椭圆或者一个黑球一个椭圆则去掉.形成第三个图形。
假如五年后你的发展不符合个人预期。你会怎么办?
赵、钱、孙三个地质工作者在辨认一块矿石,赵说:“这不是铁,也不是铅。”钱说:“这不是铁,而是铜。”孙说:“这不是铜,而是铁。”已知他们当中,有一个人判断对了,有一个人判断错了,有一个人只说对了一半。根据上述情况,以下哪项是真的?
最新回复
(
0
)