首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f”(ξ)=0.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f”(ξ)=0.
admin
2019-08-06
50
问题
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f
2
(0)+[f’(0)]
2
=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f”(ξ)=0.
选项
答案
由拉格朗日中值定理有 f(0)一f(-2)=2f’(ξ
1
),一2<ξ
1
<0, f(2)-f(0)=2f’(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知|f’(ξ
1
)|=[*] 令φ(x)=f
2
(x)+[f’(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在点ξ∈(ξ
1
,ξ
2
)[*](一2,2)处取到,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有φ’(ξ)=0,即 2f(ξ).f’(ξ)+2f’(ξ).f"(ξ)=0. 因为|f(x)|≤1,且φ(ξ)≥4,所以f’(ξ)≠0,于是有f(ξ)+f"(ξ)=0,ξ∈(一2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/ewJ4777K
0
考研数学三
相关试题推荐
设三阶矩阵A的特征值为λ1=-1,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=______.
设A,B是满足AB=O的任意两个非零阵,则必有().
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ’’(y).
设有微分方程y’一2y=φ(x),其中φ(x)=试求:在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设C1和C2是两个任意常数,则函数y=ex(C1cos2x+C2sin2x)+sinx是二阶常系数线性微分方程()的通解.
已知随机变量X的概率密度(Ⅰ)求分布函数F(x);(Ⅱ)若令Y=F(x),求Y的分布函数FY(y).
某个人参加跳高项目的及格选拔赛,规定一旦跳过指定高度就被认为及格而被入选,但是限制每人最多只能跳6次.若6次均未过竿,则认定其为落选.如果一位参试者在该指定高度的过竿率为0.6,求他在测试中所跳次数的概率分布.
设f(x)是非负随机变量的概率密度,求Y=的概率密度.
随机试题
A母婴传播B空气传播C虫媒传播D血液传播E粪一口传播麻疹的主要传播途径是
某中等城市长途汽车客运站规划设计方案(见图4),规划用地毗临城市主次干道,两条干道均设置有城巾公共汽车站点。该方案将长途站的长途客车到、发车区和站前广场分别布置在车站主体建筑售票大厅的两侧。[问题]请按照示意图中标明的①~⑦各点,合理组织长途客
下列属于无效合同的情形有()。
基金募集期限届满,封闭式基金募集的基金份额总额达到核准规模的( )以上,才可以办理其他手续。
行业分析是对()的剖析与研究。
旅行社经营原则包含()。
—Hello!—Hi,Sara.ThisisDavy.【H6】______—Fine.Howaboutyou?—【H7】______Ihadareallygoodtimeyesterdayevening.—Idi
正值毕业季,306宿舍有A、B、C、D四位男同学,他们准备找班主任宋老师合影,若要求宋老师坐中间,A、B两位同学不能挨着坐,那么总共有()坐法。
二叉树是结点的有限集合,这个有限集合或者为______,或者由一个根结点及两棵不相交的、分别称作为根的左子树和右子树的二叉树组成。
以下不合法的数值常量是()。
最新回复
(
0
)