首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f”(ξ)=0.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f”(ξ)=0.
admin
2019-08-06
65
问题
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f
2
(0)+[f’(0)]
2
=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f”(ξ)=0.
选项
答案
由拉格朗日中值定理有 f(0)一f(-2)=2f’(ξ
1
),一2<ξ
1
<0, f(2)-f(0)=2f’(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知|f’(ξ
1
)|=[*] 令φ(x)=f
2
(x)+[f’(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在点ξ∈(ξ
1
,ξ
2
)[*](一2,2)处取到,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有φ’(ξ)=0,即 2f(ξ).f’(ξ)+2f’(ξ).f"(ξ)=0. 因为|f(x)|≤1,且φ(ξ)≥4,所以f’(ξ)≠0,于是有f(ξ)+f"(ξ)=0,ξ∈(一2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/ewJ4777K
0
考研数学三
相关试题推荐
设f(x,y)在点(0,0)处是否可微?
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ’’(y).
设其中f(s,t)二阶连续可偏导,求du及
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0.f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:为参数σ2的无偏估计量.
随机向区域D:内扔一点,该点落在半圆内任何区域的概率与该区域的面积成正比,则落点与原点的连线与z轴的夹角小于的概率为______.
已知随机变量X的概率密度(Ⅰ)求分布函数F(x);(Ⅱ)若令Y=F(x),求Y的分布函数FY(y).
设随机变量X服从参数为λ的指数分布,G(x)是区间[0,1]上均匀分布的分布函数,证明随机变量Y=G(x)的概率分布不是区间[0,1]上的均匀分布.
求证:ex+e-x+2cosx=5恰有两个根.
甲盒内有3个白球与2个黑球,从中任取3个球放入空盒乙中,然后从乙盒内任取2个球放入空盒中,最后从丙盒内再任取1个球,试求:若从丙盒内取到白球,当初从甲盒内取到3个白球的概率.
随机试题
Hewasamedicalstudentbeforehe______.
毛泽东在延安整风运动中,最早提出“惩前毖后,治病救人”方针的著作是
不属于糖尿病眼部并发症的是
常用血液保存液ACD和CPD中的D指
室内墙面、柱面和门洞口的阳角,应采用()水泥砂浆作暗护角。
变电所内,用于110kV有效接地系统的母线型无间隙金属氧化物避雷器的持续运行电压和额定电压应不低于下列哪组数值?
证监会收到发行人可转换公司债券发行申请文件后的3个工作日内作出是否受理的决定。()
我国现存最古老的佛教寺院是香严寺。
—I’mtiredoffacingsomanyproblems.—Cheerup!Youcanget______them.
近年来,越南、菲律宾在南海问题上频频向中国发难,对抗行动持续升级,南海问题再次成为焦点。海洋是中国实现可持续发展的重要空间和资源保障,建设海洋强国,是国家重要发展战略。坚决维护国家海洋权益,是()的重要职责。
最新回复
(
0
)