首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明: 存在唯一的ξ∈[a,b]使f(ξ)=ξ.
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明: 存在唯一的ξ∈[a,b]使f(ξ)=ξ.
admin
2021-06-16
105
问题
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x
1
与x
2
,都有|f(x
1
)-f(x
2
)|≤k|x
1
-x
2
|,证明:
存在唯一的ξ∈[a,b]使f(ξ)=ξ.
选项
答案
由连续性及a≤f(x)≤b,再由介值定理可证ξ的存在性,因为这里未设函数可导,所以无法用导数证明零点的唯一性,而应采用反证法证明。 由|f(x
1
-f(x
2
|≤k|x
1
-x
2
|,对于任意固定的x
0
∈[a,b]作为其中的x
2
,并将x
1
记为x,于是有 |f(x)-f(x
0
)|≤k|x-x
0
| 当x→x
0
时,|f(x)-f(x
0
)|→0,于是有[*]=f(x
0
),可知f(x)在x
0
∈[a,b]处连续,由x
0
的任意性,知f(x)在[a,b]上连续。 令φ(x)=f(x)-x,则 φ(a)=f(a)-a≥0,φ(b)=f(b)-b≤0 上述两不等式中若至少有一个等式成立,例如φ(a)=0,则取ξ=a∈[a,b],有φ(ξ)=f(ξ)-ξ=0 若上述两不等式中无一个等式成立,即φ(a)=f(a)-a>0,φ(b)=f(b)-b<0,于是由连续函数介值定理知,存在ξ∈(a,b),使得φ(ξ)=f(ξ)-ξ=0 再证唯一性,用反证法证明。 设存在ξ∈[a,b],η≠ξ,使得φ(η)=f(η)-η=0,于是 f(η)-f(ξ)=η-ξ |η-ξ|=|f(η)-f(ξ)|≤k|η-ξ| 即(1-k)|η-ξ|≤0. 但因1-k>0,|η-ξ|>0,导致矛盾,所以η=ξ,证明了唯一性。
解析
转载请注明原文地址:https://kaotiyun.com/show/f6y4777K
0
考研数学二
相关试题推荐
=_______.
已知A=可对角化,a=______,作可逆矩阵P=_______,使得P-1AP,为对角矩阵.
=_______.
设其中函数f(u)可微,则=__________。
设f(x)在区间[a,﹢∞)上存在二阶导数,且,其中a,b均为常数,则=_______.
设函数f(t)在(0,+∞)内具有二阶连续导数,函数z=满足=0,若f(1)=0,f′(1)=1,求f(χ).
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是()。
n元实二次型正定的充分必要条件是()
设a=,β=,则当χ→0时,两个无穷小的关系是().
已知摆线的参数方程为其中0≤t≤2π,常数a>0.设该摆线一拱的弧长的数值等于该弧段绕x轴所围成的旋转曲面面积的数值.求a的值.
随机试题
A.黄疸B.发绀C.血肌酐升高D.突发性低血压E.消化道出血胃肠功能衰竭时
关于铁蛋白,正确的描述是
黑膏药的制备过程包括
将3个小球随机地投到4个大盒子中,则一个盒子中至多有一个球的概率为()。
某火灾事故造成一次死亡5人。按照《企业职工伤亡事故经济损失统计标准》(GB6721-1986)进行计算,该起事故的总损失工作日数是()工作日。
在下列内容中,属于Partnering模式要素的是()。
采用成本法进行长期投资核算时,一般情况下,股票投资的账面价值()。
内地企业在香港创业板发行与上市,上市时的管理层股东及高持股量股东于上市时必须最少共持有新申请人已发行股本的()。
19世纪70年代以后,王韬、薛福成、马建忠、郑观应等人不仅主张学习西方的科学技术,同时也要求吸纳西方的政治、经济学说。如郑观应在其所著的《盛世危言》中提出大力发展民族工商业,同西方国家进行“商战”,设立议院,实行“君民共主”制度等主张。他们的共同特点是
HIV&AIDS[A]AIDShasnowsurpassedtheBlackDeathonitscoursetobecometheworstpandemicinhumanhistory.Attheendof
最新回复
(
0
)