首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明: 存在唯一的ξ∈[a,b]使f(ξ)=ξ.
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明: 存在唯一的ξ∈[a,b]使f(ξ)=ξ.
admin
2021-06-16
70
问题
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x
1
与x
2
,都有|f(x
1
)-f(x
2
)|≤k|x
1
-x
2
|,证明:
存在唯一的ξ∈[a,b]使f(ξ)=ξ.
选项
答案
由连续性及a≤f(x)≤b,再由介值定理可证ξ的存在性,因为这里未设函数可导,所以无法用导数证明零点的唯一性,而应采用反证法证明。 由|f(x
1
-f(x
2
|≤k|x
1
-x
2
|,对于任意固定的x
0
∈[a,b]作为其中的x
2
,并将x
1
记为x,于是有 |f(x)-f(x
0
)|≤k|x-x
0
| 当x→x
0
时,|f(x)-f(x
0
)|→0,于是有[*]=f(x
0
),可知f(x)在x
0
∈[a,b]处连续,由x
0
的任意性,知f(x)在[a,b]上连续。 令φ(x)=f(x)-x,则 φ(a)=f(a)-a≥0,φ(b)=f(b)-b≤0 上述两不等式中若至少有一个等式成立,例如φ(a)=0,则取ξ=a∈[a,b],有φ(ξ)=f(ξ)-ξ=0 若上述两不等式中无一个等式成立,即φ(a)=f(a)-a>0,φ(b)=f(b)-b<0,于是由连续函数介值定理知,存在ξ∈(a,b),使得φ(ξ)=f(ξ)-ξ=0 再证唯一性,用反证法证明。 设存在ξ∈[a,b],η≠ξ,使得φ(η)=f(η)-η=0,于是 f(η)-f(ξ)=η-ξ |η-ξ|=|f(η)-f(ξ)|≤k|η-ξ| 即(1-k)|η-ξ|≤0. 但因1-k>0,|η-ξ|>0,导致矛盾,所以η=ξ,证明了唯一性。
解析
转载请注明原文地址:https://kaotiyun.com/show/f6y4777K
0
考研数学二
相关试题推荐
已知f(x)=sinx,f[φ(x)]=1—x2,则φ(x)=______的定义域为________.
已知线性方程组无解,则a=_______.
设平面区域D由直线y=x,圆x2+y2=2y及y轴所围成,则二重积分=______。
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+ax2。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)a取何值时,此图形绕x轴旋转一周而
在曲线y=(χ-1)2上的点(2,1)处作曲线的法线,由该法线、χ轴及该曲线所围成的区域为D(y>0),则区域D绕χ轴旋转一周所成的几何体的体积为().
求数列极限,其中xn=n[e(1+)-n-1].
“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
设a1=1,当n>1时,an+1=,证明:数列{an}收敛并求其极限。
设函数y=y(x)由参数方程所确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是()
设f(x)连续,且∫0xtf(2x-t)dt=arctanx2,f(1)=1,则∫12f(x)dx=________.
随机试题
“巧妇难为无米之炊”说明主观能动性的发挥,必须依赖一定的物质条件和物质手段。()
高适《燕歌行》:__________,玉箸应啼别离后。
试述麻醉后苏醒期间的护理要点。
A.肺气肿B.大量胸腔积液C.气胸D.支气管肺炎E.肺空洞胸部叩诊呈实音的是
下列所列各软件中,最靠近硬件一层的是()。
撤销权自债权人知道或者应知道撤销事由之日起( )年内行使。自债务人的行为发生之时起( )年内没有行使撤销权的,该撤销权消灭。
细辛是一种在森林下生活的植物,滨藜是一种在沙漠中生活的植物。下图是光照强度对两种植物(甲、乙)光合作用强度影响的曲线。请据图作答:图中e点时,限制甲植物增产的主要环境因素是光照强度,限制乙植物增产的主要环境因素是_________。
表达式divmod(40,3)的结果是()。
在面向对象方法中,实现信息隐蔽是依靠
ANiceCupofTeaTheLegendaryOriginsofTeaA)ThestoryofteabeganinancientChinaover5,000yearsago.Accordingto
最新回复
(
0
)