首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明: 存在唯一的ξ∈[a,b]使f(ξ)=ξ.
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明: 存在唯一的ξ∈[a,b]使f(ξ)=ξ.
admin
2021-06-16
77
问题
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x
1
与x
2
,都有|f(x
1
)-f(x
2
)|≤k|x
1
-x
2
|,证明:
存在唯一的ξ∈[a,b]使f(ξ)=ξ.
选项
答案
由连续性及a≤f(x)≤b,再由介值定理可证ξ的存在性,因为这里未设函数可导,所以无法用导数证明零点的唯一性,而应采用反证法证明。 由|f(x
1
-f(x
2
|≤k|x
1
-x
2
|,对于任意固定的x
0
∈[a,b]作为其中的x
2
,并将x
1
记为x,于是有 |f(x)-f(x
0
)|≤k|x-x
0
| 当x→x
0
时,|f(x)-f(x
0
)|→0,于是有[*]=f(x
0
),可知f(x)在x
0
∈[a,b]处连续,由x
0
的任意性,知f(x)在[a,b]上连续。 令φ(x)=f(x)-x,则 φ(a)=f(a)-a≥0,φ(b)=f(b)-b≤0 上述两不等式中若至少有一个等式成立,例如φ(a)=0,则取ξ=a∈[a,b],有φ(ξ)=f(ξ)-ξ=0 若上述两不等式中无一个等式成立,即φ(a)=f(a)-a>0,φ(b)=f(b)-b<0,于是由连续函数介值定理知,存在ξ∈(a,b),使得φ(ξ)=f(ξ)-ξ=0 再证唯一性,用反证法证明。 设存在ξ∈[a,b],η≠ξ,使得φ(η)=f(η)-η=0,于是 f(η)-f(ξ)=η-ξ |η-ξ|=|f(η)-f(ξ)|≤k|η-ξ| 即(1-k)|η-ξ|≤0. 但因1-k>0,|η-ξ|>0,导致矛盾,所以η=ξ,证明了唯一性。
解析
转载请注明原文地址:https://kaotiyun.com/show/f6y4777K
0
考研数学二
相关试题推荐
设f(x)=则f[f(x)]=_______.
设f(x)二阶连续可导,且=______
=_______.
设A=(a<0),且AX=0有非零解,则A*X=0的通解为_______.
[*]
若函数z=2x2+2y2+3xy+ax+by+c在点(一2,3)处取得极小值一3,则常数a,b,c之积abc=______________.
求极限
设函数f(x)在点x0的某邻域内有定义,且f(x)在点x0处间断,则在点x0处必定间断的函数为()
设n阶矩阵A的伴随矩阵为A*,证明:若|A|=0,则|A*|=0;
求数列极限,其中xn=n[e(1+)-n-1].
随机试题
法洛四联症的小儿,出现明显青紫时提示
A、石淋B、气淋C、血淋D、膏淋E、劳淋尿中有砂石,排尿涩痛见于
男性病人,65岁,因慢性支气管炎、肺部感染、呼吸衰竭入院。护理体检:气促,不能平卧,痰黏呈黄色,不易咳出。血气分析示:血氧分压5.3kPa,血二氧化碳分压10.8kPa。给其氧疗时氧浓度和氧流量应为
以下说法正确的是()
下列分子中存在孤对电子数最多的是()。
下列各项中,应当按照金融工具准则进行确认和计量的是()。
AfterIfinishedschool,Ibegantolookforawork.【M1】______Nowseveralmonthshaspassed,Ihaven’tfoundthejob【M2】______
根据我国法律的有关规定,下列有关合伙企业的表述,正确的是()。
设a=2,b=3,c=4,d=5,表达式Nota
Celebrate.Celebrate.PhysiciansaredelightedwithaFoodandDrugAdministration(FDA)advisorypanel’srecommendationearlier
最新回复
(
0
)