首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,,证明: (Ⅰ)存在c∈(0,1),使得f(c)=; (Ⅱ)存在互不相同的ξ,η∈(0,1),使得。
设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,,证明: (Ⅰ)存在c∈(0,1),使得f(c)=; (Ⅱ)存在互不相同的ξ,η∈(0,1),使得。
admin
2017-11-30
30
问题
设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,,证明:
(Ⅰ)存在c∈(0,1),使得f(c)=
;
(Ⅱ)存在互不相同的ξ,η∈(0,1),使得
。
选项
答案
(Ⅰ)根据已知条件,存在a∈(0,1],使得f(a)=M。令 F(x)=f(x)-[*], 显然F(x)在[0,1]上连续,又因为f(0)=0,n>1,故 [*] 由零点定理可知,至少存在一点c∈(0,a),使得F(c)=f(c)-[*]=0,即f(c)=[*]。 (Ⅱ)在[0,c],[c,1]上分别使用拉格朗日中值定理。已知f(x)在[0,1]上连续,在(0,1)上可导,则存在ξ∈(0,c)和η∈(c,1),使得 f(c)-f(0)=cf’(ξ) (1) f(1)-f(c)=(1-c)f’(η) (2) 由(1).f’(η)+(2).f’(ξ),结合f(0)=f(1)=0可得, [f’(η)-f’(ξ)]f(c)=f’(ξ)f’(η), 再由结论f(c)=[*]可知, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/f9X4777K
0
考研数学三
相关试题推荐
设总体X~N(0,1),(X1,X2,…,Xm,Xm+1,…,Xm+n)为来自总体X的简单随机样本,求统计量所服从的分布.
求
设X,Y是相互独立的随机变量,它们都服从参数为n,p的二项分布,证明:Z=X+Y服从参数为2n,p的二项分布.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是()
求下列极限.
∫xcos2xdx=________.
设f(x)在x=0处连续,且则曲线y=f(x)在点(0,f(0))处的切线方程为________.
设f(x)在[0,1]上连续,且则f(x)=_________.
随机试题
A.高钠血症B.高钾血症C.低钾血症D.高钙血症E.血尿素氮降低急性肾功能不全多尿期晚期易发生
属于激励过程理论的是()。
适用于小于10kW的电动机启动方法为( )。
中国银行业协会的常务理事会由()等组成。
RAM中存储的数据在断电后()丢失。
小梅想要了解当前Excel2010文档中的工作表最多有多少行,最快捷的操作方法是()
Completethenotesbelow.WriteNOMORETHANTWOWORDSAND/ORANUMBERforeachanswer.NotesonAdultEducationClasses
A、At8:35.B、At8:45.C、At8:00.D、At8:25.C根据女士的回答“every30minutes”,“7:30train”,“nexttrain”等关键词可计算出下一班火车是8点,故选C。
Thesweetconfectionknownaschocolateisconsumedtothedelightofmillionsworld-wideeveryday.Fewofthosesweet-toothed
Ateamofresearchershasfoundthatimmunizingpatientswithbeevenominsteadofwiththebees’crushedbodiescanbetterprev
最新回复
(
0
)