首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,,证明: (Ⅰ)存在c∈(0,1),使得f(c)=; (Ⅱ)存在互不相同的ξ,η∈(0,1),使得。
设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,,证明: (Ⅰ)存在c∈(0,1),使得f(c)=; (Ⅱ)存在互不相同的ξ,η∈(0,1),使得。
admin
2017-11-30
51
问题
设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,,证明:
(Ⅰ)存在c∈(0,1),使得f(c)=
;
(Ⅱ)存在互不相同的ξ,η∈(0,1),使得
。
选项
答案
(Ⅰ)根据已知条件,存在a∈(0,1],使得f(a)=M。令 F(x)=f(x)-[*], 显然F(x)在[0,1]上连续,又因为f(0)=0,n>1,故 [*] 由零点定理可知,至少存在一点c∈(0,a),使得F(c)=f(c)-[*]=0,即f(c)=[*]。 (Ⅱ)在[0,c],[c,1]上分别使用拉格朗日中值定理。已知f(x)在[0,1]上连续,在(0,1)上可导,则存在ξ∈(0,c)和η∈(c,1),使得 f(c)-f(0)=cf’(ξ) (1) f(1)-f(c)=(1-c)f’(η) (2) 由(1).f’(η)+(2).f’(ξ),结合f(0)=f(1)=0可得, [f’(η)-f’(ξ)]f(c)=f’(ξ)f’(η), 再由结论f(c)=[*]可知, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/f9X4777K
0
考研数学三
相关试题推荐
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与,求y=y(x).
一电路使用某种电阻一只,另外35只备用,若一只损坏,立即使用另一只更换,直到用完所有备用电阻为止.设电阻使用寿命服从参数为λ=0.01的指数分布,用X表示36只电阻的使用总寿命,用中心极限定理估计P(X>4200)(=0.9772).
设函数y=y(x)满足△y=△x+o(△x),且y(1)=1,则∫01y(x)dx=—一.
独立地重复进行某项试验,直到成功为止,每次试验成功的概率为p,假设前5次试验每次的试验费用为10元,从第6次起每次的试验费用为5元.试求这项试验的总费用的期望值a.
求极限
已知I(α)=,求积分∫-32(α)dα.
变换下列二次积分的积分次序:
设函数x=x(y)由方程x(y—x)2=y所确定,试求不定积分
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x—y=0,x+y=2与y=0所围成的三角形区域。求条件概率密度fX|Y(x|y)。
随机试题
A.营养不良B.垂体性侏儒C.生殖功能不全D.甲状腺功能减低E.腹泻身材矮小,比例匀称为
病马,证见粪便不通,肚腹胀满,回头观腹,不时起卧,食欲废绝,嗳气酸臭,口色赤红,舌苔黄厚,脉沉有力。本病可选用的基础方剂是()
A.小柴胡汤加减B.清胰汤合龙胆泻肝汤加减C.大承气汤加减D.桃仁承气汤加减E.大柴胡汤加减
心理社会因素参与的躯体疾病称为
对上市证券认识错误的一项是( )。
3,5,9,16,28,()。
孔子关于教育目的的思想有什么历史影响?
设3阶实对称矩阵A的秩为2,且求A的所有特征值与特征向量;
网络操作系统的基本任务是:屏蔽本地资源与网络资源的差异性,为用户提供各种基本网络服务功能,完成网络 【】的管理,并提供网络系统的安全性服务。
Whatistheprofessormainlydiscussing?
最新回复
(
0
)