首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和(yn}都发散,那么{xnyn}的敛散性又将如何?
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和(yn}都发散,那么{xnyn}的敛散性又将如何?
admin
2017-11-13
50
问题
如果数列{x
n
}收敛,{y
n
}发散,那么{x
n
y
n
}是否一定发散?如果{x
n
}和(y
n
}都发散,那么{x
n
y
n
}的敛散性又将如何?
选项
答案
在题设两种情况下,{x
n
y
n
}的收敛性都不能确定.现在先就{x
n
}收敛,{y
n
}发散的情况来分析.利用[*]这个恒等式,就可得到下述结论:若{x
n
}收敛且不收敛于零,{y
n
}发散,则{x
n
y
n
}必发散.这是因为若{x
n
y
n
}收敛,且又{x
n
}收敛而极限不等于零,则从上述恒等式及极限相除法则,可知{y
n
}收敛,这与假设矛盾.若[*],且{y
n
}发散,则{x
n
y
n
}可能收敛,也可能发散,如: ①x
n
=[*],y
n
=n,则x
n
y
n
=1,于是{x
n
y
n
}收敛. ②x
n
=[*],y
n
=(-1)
n
n,则x
n
y
n
=(-1)
n
,于是{x
n
y
n
}发散. 现在再就{x
n
}和{y
n
}都发散的情况来分析{x
n
y
n
}的收敛性.有下面的结论:若{x
n
}和{y
n
}都发散,且两者至少有一个是无穷大,则{x
n
y
n
}必发散.这是因为如果{x
n
y
n
}收敛,而{x
n
}为无穷大,从等式[*]便得到{y
n
}收敛于零,这与假设矛盾.若{x
n
}和{y
n
}都不是无穷大且都发散,则{x
n
y
n
}可能收敛,也可能发散,如 ③x
n
=y
n
=(-1)
n
有x
n
y
n
=1,于是{x
n
y
n
}收敛. ④x
n
=(-1)
n
,y
n
=1-(-1)
n
,有x
n
y
n
=(-1)”-1,于是{x
n
y
n
}发散.
解析
转载请注明原文地址:https://kaotiyun.com/show/fNr4777K
0
考研数学一
相关试题推荐
判别级数的敛散性,若收敛求其和.
A、绝对收敛B、条件收敛C、发散D、敛散性与k有关A
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
设函数f0(x)在(一∞,+∞)内连续,证明:绝对收敛.
求函数f(x)=In(1一x一2x2)的幂级数,并求出该幂级数的收敛域.
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
设f(x)在(一∞,+∞)内一阶连续可导,且.证明:收敛,而发散.
设{un},{cn}为正项数列,证明:
随机试题
中心性发绀可见于
对于粒径小于0.075mm的土进行土的颗粒分析试验方法应采用()。
FIDIC分包合同中规定,承包商就分包合同的索赔对分包商承担责任的先决条件是( )。
委托监理合同示范文本中,监理人的权利有( )。
衡量一座城市的治理水平,往往不在于建了多少高楼大厦,更要看弱势群体有多大程度的尊严,生活能否得到基本保障。平时如此,疫情防控期间同样如此。防控任务艰巨,要照顾到方方面面,兼顾每一个群体,实属不易,但越是如此,越要关注最需关注的人:大众的生活越是被按下暂停键
宪法的生命在于实施,宪法的权威也在于实施。保证宪法实施就是
攻击者无需伪造数据包中IP地址就可以实施的攻击是
下列叙述中正确的是()。
若结点的存储地址与其关键字之间存在某种映射关系,则称这种存储结构为【】。
Althoughmanyofusmayfeelair-conditionersbringrelieffromhot,humidorpollutedoutsideair,theyposemanypotentialhea
最新回复
(
0
)