首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
admin
2015-07-04
37
问题
如果数列{x
n
}收敛,{y
n
}发散,那么{x
n
y
n
}是否一定发散?如果{x
n
}和{y
n
}都发散,那么{x
n
y
n
}的敛散性又将如何?
选项
答案
在题设两种情况下,{x
n
y
n
}的收敛性都不能确定,现在先就{x
n
}收敛,{y
n
}发散的情况来分析.利用[*]这个恒等式,就可得到下述结论:若{x
n
}收敛且不收敛于零,{y
n
}发散,则{x
n
y
n
}必发散.这是因为若{x
n
y
n
}收敛,且又{x
n
}收敛而极限不等于零,则从上述恒等式及极限相除法则,可知{y
n
}收敛,这与假设矛盾.若[*],且{y
n
}发散,则{x
n
y
n
}可能收敛,也可能发散,如: ①[*]y
n
=n,则x
n
y
n
=1,于是{x
n
y
n
}收敛. ②[*],y
n
=(一1)
n
n,则x
n
y
n
=(一1)
n
,于是{x
n
y
n
}发散.现在再就{x
n
}和{y
n
}都发散的情况来分析{x
n
y
n
}的收敛性.有下面的结论:若{x
n
}和{y
n
}都发散,且两者至少有一个是无穷大,则{x
n
y
n
}必发散.这是因为如果{x
n
y
n
}收敛,而{x
n
}为无穷大,从等式[*]便得到{y
n
}收敛于零,这与假设矛盾. 若{x
n
}和{y
n
}都不是无穷大且都发散,则{x
n
y
n
}可能收敛,也可能发散,如 ③x
n
=y
n
=(一1)
n
有x
n
y
n
=1,于是{x
n
y
n
}收敛. ④x
n
=(一1)
n
,y
n
=1一(一1)
n
,有x
n
y
n
=(一1)
n
一1,于是{x
n
y
n
}发散.
解析
转载请注明原文地址:https://kaotiyun.com/show/Sow4777K
0
考研数学一
相关试题推荐
yy’-y2=1的满足y(0)=0的特解为________.
设u=f(z),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数,证明:
计算,其中D是由x2-y2=1及y=0,y=1围成的平面区域.
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则等于().
计算积分:设f(x)=求∫13f(x一2)dx.
设向量组α1=(1,3,2,0)T,α2=(7,0,14,3)T,α3=(2,一1,0,1)T,α4=(5,1,6,2)T,α5=(2,一1,4,1)T,求该向量组的秩和一个极大线性无关组,并把不是极大线性无关组的向量用此极大线性无关组线性表示.
函数z=x2-y2在点A(1,1)处沿与x轴正向组成角α=60°的方向l的方向导数为().
(2003年试题,一)设则a2=____________.
设L为圆周x2+y2=2正向一周,计算曲线积分
(02年)设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均为实对称矩阵时,试证(1)的逆命题成立.
随机试题
数量管理理论的基础是()
超声诊断仪观测病变的基本内容中,哪项是错误的
抗真菌药物按其结构可分为
心脏复苏时,下列为首选药物的是
城市规划运作体系包括城市规划具体编制和城市规划实施控制两个方面。()
施工图预算的审查步骤是()。
()是存款债权的法律凭证,也是存款合同的表现形式。
注册会计师拟制定存货监盘计划,在评价被审计单位存货盘点计划时,下列情况中不恰当的是()。
若两台服务器系统可用性分别达到99.99%和99.9%,则两台服务器每年的停机时间必须小于等于()。
Thehumanbodyisaremarkablefoodprocessor.Asanadult,youmayconsume【B1】______atonoffoodperyearandstillnotgain
最新回复
(
0
)