首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
admin
2015-07-04
82
问题
如果数列{x
n
}收敛,{y
n
}发散,那么{x
n
y
n
}是否一定发散?如果{x
n
}和{y
n
}都发散,那么{x
n
y
n
}的敛散性又将如何?
选项
答案
在题设两种情况下,{x
n
y
n
}的收敛性都不能确定,现在先就{x
n
}收敛,{y
n
}发散的情况来分析.利用[*]这个恒等式,就可得到下述结论:若{x
n
}收敛且不收敛于零,{y
n
}发散,则{x
n
y
n
}必发散.这是因为若{x
n
y
n
}收敛,且又{x
n
}收敛而极限不等于零,则从上述恒等式及极限相除法则,可知{y
n
}收敛,这与假设矛盾.若[*],且{y
n
}发散,则{x
n
y
n
}可能收敛,也可能发散,如: ①[*]y
n
=n,则x
n
y
n
=1,于是{x
n
y
n
}收敛. ②[*],y
n
=(一1)
n
n,则x
n
y
n
=(一1)
n
,于是{x
n
y
n
}发散.现在再就{x
n
}和{y
n
}都发散的情况来分析{x
n
y
n
}的收敛性.有下面的结论:若{x
n
}和{y
n
}都发散,且两者至少有一个是无穷大,则{x
n
y
n
}必发散.这是因为如果{x
n
y
n
}收敛,而{x
n
}为无穷大,从等式[*]便得到{y
n
}收敛于零,这与假设矛盾. 若{x
n
}和{y
n
}都不是无穷大且都发散,则{x
n
y
n
}可能收敛,也可能发散,如 ③x
n
=y
n
=(一1)
n
有x
n
y
n
=1,于是{x
n
y
n
}收敛. ④x
n
=(一1)
n
,y
n
=1一(一1)
n
,有x
n
y
n
=(一1)
n
一1,于是{x
n
y
n
}发散.
解析
转载请注明原文地址:https://kaotiyun.com/show/Sow4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上连续,且
求满足初始条件y"+2x(y’)2=0,y(0)=1,y’(0)=1的特解.
设确定函数z=z(x,y),则dz=________.
一条均匀链条挂在一个无摩擦的钉子上,链条长18m,运动开始时链条一边下垂8m,另一边下垂10m,问整个链条滑过钉子需要多长时间?
设积分∫1+∞xP(e-cos1/x-e-1)dx收敛,则P的取值范围为()
设数列{xn}满足xn+1=,0≤x1<3,n=1,2,….证明xn存在,并求此极限.
设u=u(x,y,z)是由方程ez+u-xy-yz-zu=0确定的可微函数,求u=u(x,y,z)在点P(1,1,0)处方向导数的最小值.
设半径为R的球面∑的球心在定球面x2+y2+z=a2(a>0)上,问当R为何值时,球面∑在定球面内部的那部分的面积最大.
(2004年试题,一)设L为正向圆周x2+y2=2在第一象限中的部分,则曲线积分一2ydx的值为=____________.
求,其中L为x2+y2=a2上从点A(a,0)沿逆时针方向到点B(一12,0)的有向曲线段,其中a>0.
随机试题
江山房地产开发公司通过公开招标的方式与宏达建筑公司签订建设工程施工合同。将其开发的盛世豪庭住宅项目交予宏达建筑公司进行施工建设。请据此回答以下问题。若该建设工程竣工且经验收质量合格,但江山房地产公司拒付合同约定的工程价款。已知建设工程已经部分抵押给银行
一份执行政府定价的买卖合同,买方逾期提货,则()。
下列项目中免征土地增值税的是( )。
A公司通过其在中国的30家店铺销售多种高质量的运动服和运动鞋。在国家经济不断增长的情况下,该公司目前是盈利的,但这几年的利润空间一直在减少,公司尚未对此查明原因。每家店铺均采用电子系统记录库存。所有商品都由各店铺提供详细的产品要求,然后由驻孟加拉国的总部集
对管理者的培训通常包括()。
资本周转的时间包括()。
统计结果表明,就糖尿病的发病率看,城市为农村的近三倍,有人认为这归咎于城市人高脂肪、高蛋白、高热量食物的高摄入量。而农村相对较少有人具备这种“富贵病”的条件。其实,这种看法很难成立,因为它忽略了这样一个事实:目前城市人均寿命高于80岁,而农村的则不到60岁
公众充权:指在公共政策的制定、执行、评估、监督过程中,公众积极参与,充分表达自己的利益主张,以推动公共政策过程的民主化与科学化。下列属于公众充权的是
(1)求函数项级数e-x+2e-2x+…+ne-nx+…收敛时x的取值范围;(2)当上述级数收敛时,求其和函数S(x),并求∫ln2ln3S(x)dx.
Thestoryofthe【S1】______Titaniccontinuesto【S2】______peopletodaypartlybecauseofthe1998Hollywoodmovies,Titanic.Peopl
最新回复
(
0
)