首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
已知线性方程组 有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
admin
2016-10-20
93
问题
已知线性方程组
有无穷多解,而A是3阶矩阵,且
分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
选项
答案
对增广矩阵高斯消元,有[*] 由于方程组有无穷多解,故a=-1或a=0. 当a=-1时,三个特征向量[*]线性相关,不合题意,舍去; 当a=0时,[*]线性无关,是A的特征向量,故a=0. 令P=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/fYT4777K
0
考研数学三
相关试题推荐
-1/2
一个班共有30名同学,其中有6名女生,假设他们到校先后次序的所有模式都有同样的可能性.求班上李明和王菲两位同学中,李明比王菲先到校的概率
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
在利用古典概型计算概率时,选择正确的样本空间是关键.比如,考虑一个投掷两枚均匀硬币的试验,其样本空间可以有两种表示.(1)如果在试验中没有区分这两枚硬币,也许是因为这两枚硬币完全相同,并且将两枚硬币同时投掷;或者是因为我们观察投掷结果时并不关心哪
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
求下列函数在指定区间上的最大值、最小值:
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
求下列函数的n阶导数的一般表达式:(1)y=xn+a1xn-1+a2xn-2+…+an-1x+an(a1,a2,…,an都是常数);(2)y=sin2x;(3)y=x-1/x+1;(4)y=ln1+x/1-x.
设函数f(x),g(x)具有二阶导数,且g"(x)
随机试题
患儿男,4岁8个月。因发热2天,左侧肢体瘫痪1天入院。2天前无明显诱因发热,体温40.3℃,伴头痛、呕吐2次,为胃内容物,非喷射性,于外院输液对症治疗,体温降至正常,入院前1天,患儿出现左侧肢体无力,不能站立,无发热及抽搐。查体:双下肢对称分布针尖大小紫红
2013年12月31日,甲公司某项固定资产计提减值准备前的账面价值为1000万元,公允价值为980万元,预计处置费用为80万元,预计未来现金流量的现值为1050万元。2013年12月31日,甲公司应对该项固定资产计提的减值准备为()万元。(201
下列各项中,年度终了需要转入“利润分配——未分配利润”科目的有()。
文书校对的方法有()。
400米全力跑,运动肌肉的主要供能系统为()
人们常说“品牌瓶装水品质更好”。美国广播电视网做了一个口味测试,把不同品牌的瓶装水和纽约市中心的公用饮用水装入同样的杯子中,要求人们对这些水进行品尝并评定等级。结果评价最低的是一种品质受到广泛认可的某品牌瓶装水。以下最能解释以上矛盾现象的是()。
下列结构中为非线性结构的是
在Java中,属于整数类型变量的是()。
74℃
Lookatthestatementsbelowandatthefiveextractsfromanarticleaboutlossofcontroldownwardinmanagement.Whicharticl
最新回复
(
0
)