首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组有三个线性无关解α1,α2,α3. (Ⅰ)证明系数矩阵的秩r(A)=2; (Ⅱ)求常数a,b的值及通解.
设非齐次线性方程组有三个线性无关解α1,α2,α3. (Ⅰ)证明系数矩阵的秩r(A)=2; (Ⅱ)求常数a,b的值及通解.
admin
2017-03-06
66
问题
设非齐次线性方程组
有三个线性无关解α
1
,α
2
,α
3
.
(Ⅰ)证明系数矩阵的秩r(A)=2;
(Ⅱ)求常数a,b的值及通解.
选项
答案
(Ⅰ)令r(A)=r,因为系数矩阵至少有两行不成比例,所以r(A)≥2. α
1
-α
2
,α
1
-α
3
为对应的齐次线性方程组的两个解. 令k
1
(α
1
-α
2
)+k
2
(α
1
-α
3
)=0,即(k
1
+k
2
)α
1
-k
1
α
2
-k
2
α
3
=0. 因为α
1
,α
2
,α
3
线性无关,所以k
1
=k
2
=0,即α
1
-α
2
,α
1
-α
3
线性无关,于是对应的齐次线性方程组的基础解系至少含两个线性无关解向量,即4-r≥2或r≤2,故r(A)=2. [*] 因为r(A)=r([*])=2,所以 [*] 解得a=2,b=-3,于是 [*] 通解为X=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/fabD777K
0
考研数学二
相关试题推荐
秦、隋虽然是两个短命王朝,但分别为汉、唐盛世奠定了基础,它们共同的历史贡献是()。
根据我国宪法规定,下列选项中哪一种情况不是公民获得物质帮助权的条件?()
将一个8厘米×8厘米×1厘米的白色长方体木块的外表面涂上黑色颜料,然后将其切成64个棱长1厘米的小正方体,再用这些小正方体堆成棱长4厘米的大正方体,且使黑色的面向外露的面积要尽量大,问大正方体的表面上有多少平方厘米是黑色的?
设f(χ,y)一阶连续可偏导,且f(tχ,ty)=t2f(χ,y),又f′1(1,2)=2,f′2(1,2)=4,则f(1,2)=________.
设f(χ)=,且g(χ的一个)原函数为ln(χ+1),求∫01f(χ)dχ.
设A为三阶实对称矩阵,且其特征值为λ1=λ2=1,λ3=0,假设ξ1,ξ2是矩阵A的不同特征向量,且A(ξ1+ξ2)=ξ2.(Ⅰ)证明:ξ1,ξ2正交;(Ⅱ)求方程组AX=ξ2的通解.
曲线y=xe—x(0≤x<+∞)绕x轴旋转一周所得延展到无穷远的旋转体的体积=_________。
证明:若f(x),g(x)都是可微函数,且z≥a时,∣f′(x)∣≤g′(x),则当x≥a时,∣f(x)―f(a)∣≤g(x)―g(a).
[*]将极限函数化成积和式形式,用定积分定义求之.解这是求积和式的极限,将它转化成积分和,利用定积分定义求该极限.由有
求f(x,y,z)=2x+2y一z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
随机试题
下列关于五脏所藏的叙述,错误的是
A.麻黄汤B.桑白皮汤C.乌头赤石脂丸D.生脉散E.参附汤胸痹气阴两虚证应用
市场调查方法可分为()。
据英国《每日邮报》报道,日本富士摄影胶片公司将利用所掌握的胶片技术创新护肤产品,进军美容业。感光乳剂中的胶原蛋白可以防止胶片被氧化,与利用胶原蛋白保护皮肤免受紫外线伤害有着异曲同工之妙。一些忠实于富士品牌的消费者认为这对于爱美人二=来说是一个好消息。消费者
下列选项中,属于基层群众性自治组织的有()。
TheInternetbeganinthe1960sasasmallnetworkofacademicandgovernmentcomputersprimarilyinvolvedinresearchfortheU
Everyhumanbeing,nomatterwhatheisdoing,givesoffbodyheat.Theusualproblemishowtodisposeofit.Butthedesigners
ShehadawayofalludingtoJeanbutneversayinghername.
TheAncientGreekOlympicsToday’sOlympicGamesarebasedonwhattookplaceatOlympia,inGreece,nearlythreemillennia
Afterretiringfrom30yearsofteaching,EthbellPeppercouldeasilyhavedecidedtositbackand【B1】______andenjoyapeaceful
最新回复
(
0
)