首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,。 其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,。 其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
admin
2017-01-21
32
问题
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,
。
其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
选项
答案
将二重积分 [*] 转化为累次积分可得 [*] 首先考虑∫
0
1
xyf
xy
"
(x,y)dx,注意这里把变量y看作常数,故有 ∫
0
1
xyf
xy
"
(x,y)dx=y∫
0
1
xdf
xy
’
(x,y) =∫
0
1
xyf
y
’
(x,y)|
0
1
一∫
0
1
yf
y
’
(x,y) dx =yf
y
’
(1,y)—∫
0
1
yf
y
’
(x,y)dx 由f(1,y)=f(x,1)=0易知,f
y
’
(1,y)=,f
y
’
(x,1)=0。所以 ∫
0
1
xyf
xy
"
(x,y)dx=一yf
y
’
(x,y)dx 因此[*]xyf
xy
"
(x,y)dxdy=∫
0
1
dy∫
0
1
xyf
xy
"
(x,y)dx=—∫
0
1
dy∫
0
1
yf
y
’
(x,y)dx, 对该积分交换积分次序可得, —∫
0
1
dy∫
0
1
yfy—(x,y)dx=—∫
0
1
dx∫
0
1
yf
y
’
—(x,y)dy 再考虑积分∫
0
1
yf
y
’
(x,y)dy,注意这里把变量x看作常数,故有 ∫
0
1
yf
y
’
(x,y)dy=∫
0
1
ydf(x,y) =yf(x,y) |
0
1
一∫
0
1
f(x,y)dy =—∫
0
1
f(x,y)dy, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/fnH4777K
0
考研数学三
相关试题推荐
证明:当0
已知当x→0时,函数f(x)=3sinx-sin3x与cxk是等价无穷小,则k=_______,c=______.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设函数f(x),g(x)具有二阶导数,且g"(x)
设函数D={(x.y)丨x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,求
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
假设随机变量U在区间[-2,2]上服从均匀分布,随机变量试求:(I)X和Y的联合概率分布;(Ⅱ)D(X+Y).
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
求极限
随机试题
()管钳是用来转动金属管或其他圆柱形工件的。
下列哪些情况可使细胞内K+释出增从而导致高钾血症
《土地管理法》规定,各省、自治区、直辖市划定的基本农田应当占本行政区域内耕地的()以上。
(操作员:张主管;账套:103账套;操作日期:2015年1月1日)输入下列科目的期初余额。可供出售金融资产:100000
2015年3月底,某企业将其与办公楼相连的地下停车场和另一独立的地下建筑物改为地下生产车间,停车场原值100万元,地下建筑物原价200万元,该企业所在省财政和地方税务部门确定的地下建筑物的房产原价折算比例为50%。房产原值减除比例为30%。该企业以上两处地
如果甲商品和乙商品是互补商品,则甲商品价格下降将造成()。
计算二重积分
定义inta=5,b;,则执行表达式b=++a*--a之后,变量b的值为______。
Whichofthefollowingisthebesttitleforthepassage?FromthetextweknowthatEmikowillmostlikelypronounce"crush"t
______hadenoughtime,theywouldhavevisitedtheGreatWall.
最新回复
(
0
)