首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明:存在一点ε∈(0,a),使f(ε)+εfˊ(ε)=0.
设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明:存在一点ε∈(0,a),使f(ε)+εfˊ(ε)=0.
admin
2011-11-19
93
问题
设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明:存在一点ε∈(0,a),使f(ε)+εfˊ(ε)=0.
选项
答案
证: 在闭区间[0,a]上考虑函数F(x)=xf(x). 由f(x)在[0,a]连续,在(0,a)可导,可知F(x)具有相同的性质.又F(0)=0,F(a)=af(a)=0,由罗尔中值定理,存在一点ε∈(0,a),使Fˊ(ε)=0,即f(ε)+εfˊ(ε)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/ftF4777K
0
考研数学三
相关试题推荐
结合材料回答问题:材料1新冠肺炎疫情再次证明,只有构建人类命运共同体才是人间正道。在这场攸关全人类健康福祉、世界发展繁荣的斗争中,团结合作是最有力的武器。世界各国应该以团结取代分歧、以理性消除偏见,凝聚起抗击疫情的强大合力,加强合作,共克时艰,
2021年是中国共产党成立100周年。在全党开展党史学习教育,是党中央立足党的百年历史新起点、统筹中华民族伟大复兴战略全局和世界百年未有之大变局、为动员全党全国满怀信心投身全面建设社会主义现代化国家而作出的重大决策。在全党开展党史学习教育,是(
2021年是中国加入世界贸易组织20周年。20年来,中国经济总量从世界第六位上升到第二位,货物贸易从世界第六位上升到第一位,服务贸易从世界第十一位上升到第二位,利用外资稳居发展中国家首位,对外直接投资从世界第二十六位上升到第一位。目前,中国已成为50多个国
2019年是中华人民共和国成立70周年,党中央决定,隆重表彰一批为新中国建设和发展作出杰出贡献的功勋模范人物。9月29日,颁授仪式在北京人民大会堂金色大厅隆重举行,习近平发表重要讲话指出,崇尚英雄才会产生英雄,争做英雄才能英雄辈出。英雄模范们用行动再次证明
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
求下列均匀薄片或均匀物体对指定直线的转动惯量:(1)边长为a与b的矩形薄片对两条边的转动惯量;(2)轴长为2a与2b的椭圆形薄片对两条轴的转动惯量;(3)半径为a的球体对过球心的直线及对与球体相切的直线的转动惯量;(4)半径为a,高为h的圆柱体对过
计算下列第二类曲面积分:
设水以常速(即单位时间注入的水的体积为常数)注入图2.7所示的罐中,直至将水罐注满.画出水位高度随时问变化的函数y=y(t)的图形(不要求精确图形,但应画出曲线的凹凸方向并表示出拐点).
计算下列极限:
方程yy〞=1+yˊ2满足初始条件y(0)=1,yˊ(0)=O的通解为________.
随机试题
某运动员常出现面色有些苍白、头昏眼花、注意力不集中等症状,可能的病因是
婴儿、面部、会阴部一般应用下列哪项消毒
以下不是中厚皮片的优点的是
基金托管人根据()指令办理资金划拨。
少年儿童面临的五大健康问题有哪些?
“国策基准”
设
下列关于链式存储结构的叙述中,哪些是正确的?()Ⅰ.逻辑上相邻的结点物理上不必邻接Ⅱ.每个结点都包含恰好一个指针域Ⅲ.用指针来体现数据元素之间逻辑上的联系Ⅳ.结点中的指针都不能为空Ⅴ.可以通过计算直
他任何新的技能都不想学,因为他不喜欢做一个初学者。
Thequestion______(是否该坦白交代)hastroubledhimforaweek.
最新回复
(
0
)