首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(l>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx; (Ⅱ)求
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(l>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx; (Ⅱ)求
admin
2019-04-22
75
问题
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(l>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫
a
a+l
f(x)dx=∫
0
l
f(x)dx;
(Ⅱ)求
选项
答案
(I)证明 必要性 设φ(a)=∫
a
a+l
f(x)dx一∫
0
l
f(x)dx,由题设 φ’(a)=f(a+1)一f(a)=0, 则φ(a)=c(常数)。设a=0,则c=φ(0)=0,那么∫
a
a+l
f(x)dx=∫
0
l
f(x)dx。 充分性 在∫
a
a+l
f(x)dx=∫
0
l
f(x)dx两边对a求导,得f(a+l)一f(a)=0,故f(x)以l为周期。 (Ⅱ)利用上述性质,将原区间变换成对称区间,从而利于使用函数的奇偶性,于是 [*] 在上式第2项中作变量替换x=π—t,即可化为第1项,故 原式=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ftV4777K
0
考研数学二
相关试题推荐
若f(1+x)=af(x)总成立,且f’(0)=b.(a,b为非零常数)则f(x)在x=1处
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为()
设矩阵,则矩阵A与B()
设fn(χ)=χ+χ2+…+χn(n≥2).(1)证明方程fn(χ)=1有唯一的正根χn;(2)求χn.
设f(χ)在χ0的邻域内四阶可导,且|f(4)(χ)|≤M(M>0).证明:对此邻域内任一异于χ0的点χ,有其中χ′为χ关于χ0的对称点.
证明:用二重积分证明
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量.若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
(1)设=0,求a,b的值.(2)确定常数a,b,使得ln(1+2χ)+=χ+χ2+o(χ2).(3)设b>0,且=2,求b.
用拉格朗日乘数法计算下列各题:(1)欲围一个面积为60m2的矩形场地,正面所用材料每米造价10元,其余三面每米造价5元.求场地长、宽各为多少米时,所用材料费最少?(2)用a元购料,建造一个宽与深相同的长方体水池,已知四周的单位面积材料费为底面单位面积材
随机试题
津液能够滋养濡润
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联
Itisa______ridefromhishometotheshoppingcenter.
在近端小管中滤出的HCO3-被重吸收的方式为
幼儿期年龄的划分应是
A.一般不引起细胞病变效应B.细胞内形成多型核巨细胞C.易发生基因重排D.主要通过血液传播E.细胞核内形成嗜酸性包涵体甲肝病毒
属于给水处理构筑物的是()。
牛顿看到成熟的苹果从树上掉下来,研究它的原因,发现了万有引力的秘密,开创了物理学的一个新时代。瓦特从水开时蒸汽顶起壶盖的现象中受到启发,发明了蒸汽机。马克思从人们每天都在进行的亿万次的商品交换中发现了现代资本主义发生、发展和灭亡的规律,为无产阶级社会主义革
一般情况下,母亲与照顾关怀相联结,而如果母亲又常常与跳舞相联结,那么跳舞就可能会成为一种()
A、 B、 C、 C
最新回复
(
0
)