首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2017-09-15
88
问题
设A=
,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
由λ
1
=λ
2
=2及λ
1
+λ
2
+λ
3
=tr(A)=10得λ
3
=6. 因为矩阵阵A有三个线性无关的特征向量,所以r(2E-A)=1, 由2E-A=[*] 得a=2,b=-2. λ
1
=λ
2
=2代入(XE-A)X=0, 由[*] 得λ
1
=λ
2
=2对应的线性无关的特征向量为 [*] λ
3
=6代入(λE-A)X=0, 由6E-A=[*] 得λ
3
=6对应的线性无 关的特征向量为 [*] 则P可逆,且P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nKt4777K
0
考研数学二
相关试题推荐
[*]
[*]
[*]由克莱姆法则知,该方程组有惟一解:x1=D1/D=1,x2=x3=…=xn=0.
函数f(x)在(-∞,+∞)内有定义,f(x)不恒等于1,下列给出的函数哪些必为奇函数?哪些必为偶函数?(1)f(x2)(2)xf(x2)(3)x2f(x)(4)f2(x)(5)f(|x|)
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆.现将贮油罐平放,当油罐中油面高度为3/2b时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
用导数的定义求函数y=1-2x2在点x=1处的导数。
曲线的水平渐近线方程为______.
下列曲线中有渐近线的是
设y=y(x)由ln(x2+y)=x3y+sinx确定,求
随机试题
Thepricewasveryreasonable:Iwouldgladlyhavepaid______heasked.
需要HBV辅助才能增殖的病毒为
感染风疹病毒后最严重的后果是
7~12μm的微粒静脉注射后第一个能贮留的靶位是
皮下斑点隐隐稀少,色淡红,压之不退,伴诸虚症状,此为皮疹高出皮肤,时现时隐,搔之连片,此为
下列对企业所得税法规定的税收优惠政策的表述中,正确的有()。
Whichofthefollowingdoesnotbelongtothepost-listeningactivities?
一旦抚育者离开,儿童就会表现出类似哭闹行为,称为()。
依据材料1,从认识论上分析说明危难之中见精神。依据材料2,从价值观上分析说明危难之中见精神。
WherewillJean’ssistercomefrom?
最新回复
(
0
)