首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs—1一口、,βs=αs+α1,讨论向量组β1,β2,…,βs的线性相关性.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs—1一口、,βs=αs+α1,讨论向量组β1,β2,…,βs的线性相关性.
admin
2018-07-31
65
问题
设向量组α
1
,α
2
,…,α
s
(s≥2)线性无关,且β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s—1
一口、,β
s
=α
s
+α
1
,讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
由于 [β
1
β
2
… β
s
]=[α
1
α
2
… α
s
][*], 记上=式最右边的s阶矩阵为A,则由于[α
1
α
2
… α
s
]为列满秩矩阵,知γ[β
1
β
2
… β
s
]=r(A).即有: α
1
,α
2
,…,α
s
线性无关(线性相关)→|A|≠0(|A|=0),而|A|=1+(—1)
1+s
=[*]所以,当s为奇数时,向量组线性无关;当s为偶数时,线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/g5g4777K
0
考研数学一
相关试题推荐
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
求
设f(x)在(一∞,+∞)上有定义,且对任意的x,y∈(一∞,+∞)有|f(x)一f(y)|≤|x—y|.证明:|∫ab|f(x)dx一(b一a)f(a)|≤(b一a)2.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为一.(1)求E(Z),D(Z);(2)求ρXY;(3)X,Z是否相互独立?为什么?
设随机变量X~U[一1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
设矩薛A满足(2E一C-1B)AT=C-1,且B=,求矩阵A.
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
随机试题
根据税收征收管理法律制度的规定,税务机关在税款征收中可以根据不同情况采取相应的税款征收措施,下列各项中,不属于税款征收措施的是()。
在配送中心的活动中,仓储有两种形式:一种是暂时储存形态,另一种是储备形态。一般来说,暂时储存形态仪仅适用于周转率大的商品。()
现有3个箱子,依次放入1、2、3个球,然后将3个箱子随机编号为甲、乙、丙,接着在甲、乙、丙3个箱子里分别放人其箱内球数的2、3、4倍。两次共放了22个球。最终甲箱中的球比乙箱:
商洽性文件的主要文种是()。
2019年,广东规模以上工业企业用水量39.54亿立方米,分水种看,自来水用水量最大,达35.67亿立方米,占全部用水量的90.2%;地表淡水用水量2.52亿立方米,地下淡水0.03亿立方米,其他水1.32亿立方米。分地区看,珠三角
主张“知识是个人的建构,不存在共同的知识”属于()
下面观点不属于凯恩斯流动性偏好理论的是()。
Takingacell,practicallyanycell,fromyourbody,thetheorygoes,andthroughappropriatebiologicaltinkering(摆弄)youcan
SomeAfricanAmericanshavehadaprofoundimpactonAmericansociety,changingmanypeople’sviewsonrace,historyandpolitic
NewZealandSeaweedCallusnotweeds;weareflowersofthesea.SectionASeaweedisaparticularlynutritiousfood,whichabs
最新回复
(
0
)