首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs—1一口、,βs=αs+α1,讨论向量组β1,β2,…,βs的线性相关性.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs—1一口、,βs=αs+α1,讨论向量组β1,β2,…,βs的线性相关性.
admin
2018-07-31
48
问题
设向量组α
1
,α
2
,…,α
s
(s≥2)线性无关,且β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s—1
一口、,β
s
=α
s
+α
1
,讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
由于 [β
1
β
2
… β
s
]=[α
1
α
2
… α
s
][*], 记上=式最右边的s阶矩阵为A,则由于[α
1
α
2
… α
s
]为列满秩矩阵,知γ[β
1
β
2
… β
s
]=r(A).即有: α
1
,α
2
,…,α
s
线性无关(线性相关)→|A|≠0(|A|=0),而|A|=1+(—1)
1+s
=[*]所以,当s为奇数时,向量组线性无关;当s为偶数时,线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/g5g4777K
0
考研数学一
相关试题推荐
设α1=.(1)a,b为何值时,B不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,B可唯一表示为α1,α2,α3,α4的线性组合?
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为()
设f(x)在R上是以T为周期的连续奇函数,则下列函数中不是周期函数的是().
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
若(X,Y)服从二维正态分布,则①X,Y一定相互独立;②若ρXY=0,则X,Y一定相互独立;③X和Y都服从一维正态分布;④X,Y的任一线性组合服从一维正态分布.上述几种说法中正确的是().
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=___________.
随机试题
卵泡发育的过程中,不包括以下哪项
急性胰腺炎时,血清淀粉酶变化的特点,下列哪项不正确()
枳术丸的功用是
既含蟾酥又含雄黄的中成药有()。
某公司承建一滨海电厂的输煤系统改扩建工程,该电厂要求输煤系统能尽快投入生产,因此该工程工期非常紧张。施工单位按业主要求编制施工组织设计并加快施工速度,昼夜赶工,按合同要求施工内容已全部完工,并进入试运转的尾声。为了下一步顺利进行竣工验收的检查工作
一般认为,基金起源于()。
多样化投资分散风险的风险管理策略行之有效的前提条件是()。
根据合伙企业法律制度的规定,有限合伙人的下列行为,不视为执行合伙事务的有()。
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
Here______apen,afewenvelopesandsomepaperforyou.
最新回复
(
0
)