首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs—1一口、,βs=αs+α1,讨论向量组β1,β2,…,βs的线性相关性.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs—1一口、,βs=αs+α1,讨论向量组β1,β2,…,βs的线性相关性.
admin
2018-07-31
33
问题
设向量组α
1
,α
2
,…,α
s
(s≥2)线性无关,且β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s—1
一口、,β
s
=α
s
+α
1
,讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
由于 [β
1
β
2
… β
s
]=[α
1
α
2
… α
s
][*], 记上=式最右边的s阶矩阵为A,则由于[α
1
α
2
… α
s
]为列满秩矩阵,知γ[β
1
β
2
… β
s
]=r(A).即有: α
1
,α
2
,…,α
s
线性无关(线性相关)→|A|≠0(|A|=0),而|A|=1+(—1)
1+s
=[*]所以,当s为奇数时,向量组线性无关;当s为偶数时,线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/g5g4777K
0
考研数学一
相关试题推荐
设α1=.(1)a,b为何值时,B不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,B可唯一表示为α1,α2,α3,α4的线性组合?
设f(x)在(0,+∞)内连续且单调减少.证明: ∫1n+1f(x)dx≤f(k)≤f(1)+∫1nf(x)dx.
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设f(x)在(一∞,+∞)上有定义,且对任意的x,y∈(一∞,+∞)有|f(x)一f(y)|≤|x—y|.证明:|∫ab|f(x)dx一(b一a)f(a)|≤(b一a)2.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1—ξ2—ξ3,Aξ3=2ξ1—2ξ2—ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
随机试题
工业毒物侵入人体的途径有呼吸道、皮肤和消化道。()
骨盆出口狭窄时可测量骨盆出口——径。
《香市》的作者是()
患儿,男性,5岁,前牙反颌,后牙近中错颌,反覆颌深,反覆盖小,牙齿无松动,牙列整齐,无拥挤。乳牙期矫治的目的是
施工单位必须保证安全设施的工程质量符合有关法律、法规、国家标准或者行业标准、设计文件以及合同的约定,并经质量监督机构核定为合格或优良。这就要求施工单位必须按()承担相应的工程任务,不得擅自超越()及业务范围承包工程;必须依据安全设施设计和技术标准精
中国证监会及其派出机构有权采取下列()措施,对期货公司或者营业部的经营管理、业务活动、财务状况等进行检查。
定量研究基于实证主义方法,其功能在于揭示和描述( )。
中国共产党对民主党派所采取的基本方针是()。
A、Arrangingforameeting.B、Discussingaproposal.C、Outlininganinvitationletter.D、Makinganapology.A工作商务类,行动计划题。女士希望能尽早和
Adultsaregettingsmarteraboutbowsmartbabiesare.Notlongago,researcherslearnedthat4-day-oldscouldunderstand【B1】__
最新回复
(
0
)