首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α,证明: (Ⅰ)矩阵B=[α,Aα,A4α]可逆; (Ⅱ) BTB为正定矩阵.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α,证明: (Ⅰ)矩阵B=[α,Aα,A4α]可逆; (Ⅱ) BTB为正定矩阵.
admin
2020-04-09
23
问题
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A
2
α线性无关,且A
3
α=3Aα一2A
2
α,证明:
(Ⅰ)矩阵B=[α,Aα,A
4
α]可逆;
(Ⅱ) B
T
B为正定矩阵.
选项
答案
(1)由A
3
α一3Aα一2A
2
α得到 A
4
α=A.A
3
α=3A
2
α一2A
3
α=3A
2
α一2(3Aα一2A
2
α)=一6Aα+7A
2
α, 则 [α,Aα,A
4
α]=[α,Aα,A
2
α][*]=[α,Aα,A
2
α]G. 因|G|=[*]=7≠0,α,Aα,A
2
α线性无关,故α,Aα,A
4
α线性无关,所以矩阵B可逆. 设k
1
α+k
2
Aα+k
3
A
4
α=0,即 k
1
α+k
2
Aα+k
3
(7A
2
α一6Aα)=0, 亦即 k
1
α+(k
2
一6k
3
)Aα+7k
3
A
2
α=0. 因α,Aα,A
2
α线性无关,故 k
1
=0,k
2
一6k
3
=0,7k
3
=0,即 k
1
=k
2
=k
3
=0, 所以α,Aα,A
4
α线性无关,因而矩阵B可逆. (2)因(B
T
B)
T
=B
T
(B
T
)
T
=B
T
B,故B
T
B为实对称矩阵. 又对任意X≠0,因B可逆,有BX≠0,于是有 X
T
(B
T
B)X=(BX)
T
(BX)>0, 故二次型X
T
B
T
BX是正定二次型,从而B
T
B为正定矩阵.
解析
(1)利用矩阵B的可逆性可构造矩阵证之.为此将B表示为两个可逆矩阵的乘积,也可利用向量组α,Aα,A
2
α线性无关的性质用定义证明.
(2)用定义证明X
T
B
T
BX为正定二次型.
转载请注明原文地址:https://kaotiyun.com/show/g9x4777K
0
考研数学三
相关试题推荐
当物体的温度高于周围介质的湿度时,物体就不断冷却.若物体的温度T与时间t的函数关系为T=T(t).应怎样确定该物体在时刻t的冷却速度?
求幂级数的收敛域及和函数S(x).
设,其中函数f,g具有二阶连续偏导数,求
求
求其中D为y=x及x=0所围成区域.
设X,Y为随机变量,且E(X)=1,E(Y)=2,D(X)=4,D(Y)=9,ρXY=一,用切比雪夫不等式估计P{|X+Y-3|≥10).
(1)设y=f(x,t),其中t是由G(x,y,t)=0确定的x,y的函数,且f(x,t),G(x,y,t)一阶连续可偏导,求.(2)设z=z(x,y)由方程z+lnz-∫yxe-t2dt=1确定,求.
设一阶非齐次线性微分方程yˊ+p(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=________.
已知3维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是______.
极限=A≠0的充要条件是()
随机试题
存在肾盂积水并且肾盂内充满低回声区,可能是
男性,31岁,发热伴牙龈肿胀、出血10天,化验血呈全血细胞减少,骨髓增生极度活跃,原始细胞40%,血清和尿溶菌酶活性增高,诊断急性白血病下列治疗急性白血病的药物中,作用于细胞周期中M期的是
与气的生成关系最密切的是
建筑安装工程费中的税金是指()。
下列关于会计数据输入功能基本要求的说法中,正确的有()。
创造性思维表现为思维的()
下列不属于警纪处分的是()。
情报专家巴克斯特在给花草浇水时,脑子里突然出现了一个_________的念头,也许是经常与间谍、情报打交道的缘故,他竞_________地把测谎仪器的电极绑到一株天南星植物的叶片上。结果,他惊奇地发现,当水从根部徐徐上升时,测谎仪上显示出的曲线图形居然与人
无形资产评估一般采用收益法,这是由无形资产的特征决定的。()
大江流日夜,_______。
最新回复
(
0
)