首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α,证明: (Ⅰ)矩阵B=[α,Aα,A4α]可逆; (Ⅱ) BTB为正定矩阵.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α,证明: (Ⅰ)矩阵B=[α,Aα,A4α]可逆; (Ⅱ) BTB为正定矩阵.
admin
2020-04-09
17
问题
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A
2
α线性无关,且A
3
α=3Aα一2A
2
α,证明:
(Ⅰ)矩阵B=[α,Aα,A
4
α]可逆;
(Ⅱ) B
T
B为正定矩阵.
选项
答案
(1)由A
3
α一3Aα一2A
2
α得到 A
4
α=A.A
3
α=3A
2
α一2A
3
α=3A
2
α一2(3Aα一2A
2
α)=一6Aα+7A
2
α, 则 [α,Aα,A
4
α]=[α,Aα,A
2
α][*]=[α,Aα,A
2
α]G. 因|G|=[*]=7≠0,α,Aα,A
2
α线性无关,故α,Aα,A
4
α线性无关,所以矩阵B可逆. 设k
1
α+k
2
Aα+k
3
A
4
α=0,即 k
1
α+k
2
Aα+k
3
(7A
2
α一6Aα)=0, 亦即 k
1
α+(k
2
一6k
3
)Aα+7k
3
A
2
α=0. 因α,Aα,A
2
α线性无关,故 k
1
=0,k
2
一6k
3
=0,7k
3
=0,即 k
1
=k
2
=k
3
=0, 所以α,Aα,A
4
α线性无关,因而矩阵B可逆. (2)因(B
T
B)
T
=B
T
(B
T
)
T
=B
T
B,故B
T
B为实对称矩阵. 又对任意X≠0,因B可逆,有BX≠0,于是有 X
T
(B
T
B)X=(BX)
T
(BX)>0, 故二次型X
T
B
T
BX是正定二次型,从而B
T
B为正定矩阵.
解析
(1)利用矩阵B的可逆性可构造矩阵证之.为此将B表示为两个可逆矩阵的乘积,也可利用向量组α,Aα,A
2
α线性无关的性质用定义证明.
(2)用定义证明X
T
B
T
BX为正定二次型.
转载请注明原文地址:https://kaotiyun.com/show/g9x4777K
0
考研数学三
相关试题推荐
设随机变量X在(0,3)内随机取值,而随机变量y在(X,3)内随机取值,求协方差Cov(X,Y).
设X1,X2,…,Xn是取自正态总体X的简单随机样本,EX=μ,DX=4,试分别求出满足下列各式的最小样本容量n:
设且f[φ(x)]=lnx,求
设二维离散型随机变量(X,Y)的概率分布如下表所示求Cov(X—Y,Y)。
设ξ和η是独立同分布的两个随机变量。已知ξ的分布律为P{ξ=i}=,i=l,2,3,又设X=max{ξ,η},Y=min{ξ,η}。求E(X)。
函数的定义域为________.
设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0,证明:向量组α,Aα,…,Ak-1α线性无关.
设y1=ex,y2=x2为某二阶齐次线性微分方程的两个特解,则该微分方程为_________.
设n元线性方程组Ax=b,其中(1)当a为何值时,该方程组有唯一解,并求x1;(2)当a为何值时,该方程组有无穷多解,并求通解.
下列命题中错误的是()
随机试题
使血小板聚集最重要的物质是()。
A.乳糖 B.低聚糖 C.乳铁蛋白 D.IgA E.IgM可促进肠道乳酸杆菌的生长繁殖的是()。
用生物素标记HPV-DNA探针检测石蜡切片内HPV-DNA时,加入碱性磷酸酶标记的抗生物素蛋白后室温孵育30分钟,用BCIP/NBT显色,最后用核固红染色,阳性结果将表现为
CT图像形成所采用的方式是
颈内动脉系统TIA的临床表现有
苦杏仁的炮制条件是
在监理过程中,总监理工程师发现施工单位工作不力,可提出( )的要习
若工程在施工过程中不能停工,或不继续施工会造成安全事故或重大质量事故的,经项目法人、监理单位、设计单位同意并签字认可后即可施工,但项目法人应将情况在()个工作日内报告项目主管部门备案。
某建设单位拟装修其办公楼,其中涉及承重结构变动,则下列表述正确的有()。
______标志着中国古代文学理论和文学批评建立了完整的体系。
最新回复
(
0
)