首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,f(0)=0,且f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
设f(x)二阶可导,f(0)=0,且f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
admin
2016-10-24
32
问题
设f(x)二阶可导,f(0)=0,且f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
选项
答案
不妨设a≤b,由微分中值定理,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),使得 [*] 两式相减得f(a+b)一f(a)一f(b)=[f’(ξ
2
)一f’(ξ
1
)]a. 因为f"(x)>0,所以f’(x)单调增加,而ξ
1
<ξ
2
,所以f’(ξ
1
)<f’(ξ
2
), 故f(a+b)一f(a)一f(b)=[f’(ξ
2
)一f’(ξ
1
)]a>0,即 f(a+b)>f(a)+f(b).
解析
转载请注明原文地址:https://kaotiyun.com/show/gIH4777K
0
考研数学三
相关试题推荐
对于函数f(x),如果存在一点c,使得f(c)=c,则称c为f(x)的不动点.(1)作出一个定义域与值域均为[0,1]的连续函数的图形,并找出它的不动点;(2)利用介值定理证明:定义域为[0,1],值域包含于[0,1]的连续函数必定有不动点.
求下列曲面在指定点处的切平面与法线方程:(1)x2+2y2+3z2=21,点(1,2,2);(2)xyz=6,点(1,2,3);(3)ez-z+xy=3,点(2,1,0);
设有曲面积分,其中∑为将原点包围在其内部的光滑闭曲面,n=(cosα,cosβ,cosγ)为∑上的动点M处的外法向量,r=|OM|.(1)如果∑1与∑2为满足上述条件的两张曲面,∑1位于∑2的内部,并记在∑1和∑2上的上述积分值分别为I1和I2,证明I1
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
有k个坛子,每一个装有n个球,分别编号为1至n,今从每个坛子中任取一球,求m是所取的球中的最大编号的概率.
假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率Q。
设函数f(x)对任意x均满足等式f(1+x)=af(x),且fˊ(0)=b,其中a,b为非零常数,则().
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).写出所有可能结果构成的样本空间Ω;
随机试题
简述欧洲浪漫主义美术产生的背景、艺术风格、代表人物及其代表作品。[江苏2019]
WhenwethinkofcreativepeoplethenamesthatprobablyspringtomindarethoseofmensuchasLeonardodaVinci,AlbertEinst
麻某求朋友冯某利用职务的便利提供点醋酸酐、乙醚和三氯甲烷,冯某知道麻曾有吸毒、贩毒行径,这一次收集这类原料保不准是要自己制造毒品了。但因麻许诺一定重谢,还是从库中偷取了一些给麻某,麻某酬谢了冯某1万元。对冯某应以何罪论处?()
事中质量控制包括技术交底、过程输入的检验、工艺流程、监视检验点、检验器具以及变更、不合格、()等控制。
从某种意义上讲,( )的作用在于建立最终的风险清单。
工程平面控制网的测量方法有()。
班级中的非正式群体是自发形成的,具有不稳定性。作为班主任,要积极关注班级中的非正式群体,力求将其消灭于萌芽之中。()
Weareplanningtomakea______totheGreatWall.
TheproportionofworkscutforthecinemainBritaindroppedfrom40percentwhenIjoinedtheBBFCin1975tolessthan4perc
(1)Boundarieshaveunderpinnedprettymucheveryaspectofmylife,bothpastandpresent.Fromtheprofoundlackoftheminear
最新回复
(
0
)