首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
admin
2016-10-24
109
问题
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫
a
b
φ(x)dx=1.证明:∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
选项
答案
因为f"(x)≥0,所以有f(x)≥f(x
0
)+f’(x
0
)(x—x
0
). 取x
0
=∫
a
b
xφ(x)dx,因为φ(x)≥0,所以aφ(x)≤xφ(x)≤bφ(x),又∫
a
b
φ(x)dx=1,于是有a≤∫
a
b
xφ(x)dx—x
0
≤b.把x
0
=∫
a
b
xφ(x)dx代入f(x)≥f(x
0
)+f’(x
0
)(x一x
0
)中,再由φ(x)≥0,得 f(x)φ(x)≥f(x
0
)φ(x)+f’(x
0
)[xφ(x)一x
0
φ(x)], 上述不等式两边再在区间[a,b]上积分,得∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
解析
转载请注明原文地址:https://kaotiyun.com/show/gdT4777K
0
考研数学三
相关试题推荐
设有来自三个地区的10名、15名、25名考生的报告表,其中女生的报名表分别为3份、7份、5份.随机地取一个地区的报名表,从中先后抽取两份.(1)求先抽到的一份是女生表的概率p;(2)已知后抽到的一份是男生表,求先抽到的是女生表的概率q.
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
写出下列各试验的样本空间:(1)掷两枚骰子,分别观察其出现的点数;(2)观察一支股票某日的价格(收盘价);(3)一人射靶三次,观察其中靶次数;(4)一袋中装有10个同型号的零件,其中3个合格7个不合格,每次从中随意取
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
求下列均匀薄片或均匀物体对指定直线的转动惯量:(1)边长为a与b的矩形薄片对两条边的转动惯量;(2)轴长为2a与2b的椭圆形薄片对两条轴的转动惯量;(3)半径为a的球体对过球心的直线及对与球体相切的直线的转动惯量;(4)半径为a,高为h的圆柱体对过
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
将一平面薄板铅直浸没于水中,取x轴铅直向下,y轴位于水面上,并设薄板占有xOy面上的闭区域D,试用二重积分表示薄板的一侧所受到的水压力.
利用高斯公式计算第二类曲面积分:
设u(x,y,z),v(x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,依次表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数.证明:其中∑是空间闭区域Ω的整个边界曲面.
设X1,X2,…,X9是来自正态总体X的简单随机样本,Y1=1/6(X1+X2+…+X6),y2=1/3(X7+X8+X9),S2=(Xi-Y2)2Z=证明统计量Z服从自由度为2的t分布.
随机试题
用未来预期收益折算来反映整体资产的现实价值,用预期使用年限和功能来评估某类资产的价值,体现的是资产评估的()
为确定尿道损伤的病理类型,最好的检查方法是()
专利权终止的情况有()。
某建设工程项目分包工程发生生产安全事故,负责向安全生产监督管理部门、建设行政主管部门或其他有关部门上报的是()。
下列对模板式制单软件的表述,正确的是()。
企业针对职工的体检计划属于( )计划。
下列有关刑事诉讼中回避制度的表述,正确的是()。
在经济较快增长的同时实现节能环保额目标,主要途径就是推进节能减排技术开发,节能减排技术开发具有较强的外部经济性,需要贯彻“以企业为主体,以政府为主导”的原则,而且政府引导必须先行。政府的当务之急是推进节能减排产业化进程,为企业创造必要的市场空间:通过完善政
①然而哲学家罗素对康德不无讽刺地说,这只是一个出生在柯尼斯堡(康德的家乡)平原的人的想法,一个出生在阿尔卑斯山区的人就不会这样想②牛顿和康德都持有一种绝对空间的观念③但这些事物与空间无关,对空间不产生影响,其实这是一种绝对的虚空观④牛顿说,绝对的空间
Sometimeago,aninterestingdiscoverywasmadeby【C1】______ontheAegeanislandofKea.AnAmericanteamexploredatemplewhi
最新回复
(
0
)