首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
admin
2016-10-24
122
问题
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫
a
b
φ(x)dx=1.证明:∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
选项
答案
因为f"(x)≥0,所以有f(x)≥f(x
0
)+f’(x
0
)(x—x
0
). 取x
0
=∫
a
b
xφ(x)dx,因为φ(x)≥0,所以aφ(x)≤xφ(x)≤bφ(x),又∫
a
b
φ(x)dx=1,于是有a≤∫
a
b
xφ(x)dx—x
0
≤b.把x
0
=∫
a
b
xφ(x)dx代入f(x)≥f(x
0
)+f’(x
0
)(x一x
0
)中,再由φ(x)≥0,得 f(x)φ(x)≥f(x
0
)φ(x)+f’(x
0
)[xφ(x)一x
0
φ(x)], 上述不等式两边再在区间[a,b]上积分,得∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
解析
转载请注明原文地址:https://kaotiyun.com/show/gdT4777K
0
考研数学三
相关试题推荐
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
掷两枚均匀的骰子,已知它们出现的点数各不相同,求其中有一个点数为4的概率.
设有来自三个地区的10名、15名、25名考生的报告表,其中女生的报名表分别为3份、7份、5份.随机地取一个地区的报名表,从中先后抽取两份.(1)求先抽到的一份是女生表的概率p;(2)已知后抽到的一份是男生表,求先抽到的是女生表的概率q.
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
由概率的公理化定义证明:(1)P()=1-P(A);(2)P(A-B)=P(A)-P(AB).特别地,若A⊃B,则P(A-B)=P(A)-P(B).且P(A)≥P(B);(3)0≤P(A)≤1;(4)P(A∪B)
求直线绕z轴旋转所得旋转曲面的方程.
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率Q。
随机试题
我国的国家权力机关是国务院和地方各级人民政府。
发明专利权的保护期限为()。
不属于申请使用基础测绘成果要求的是()。
甲、乙双方于2014年3月10日签订一份施工合同。2014年3月20日,乙方发现甲方隐瞒了施工现场周边真实地质条件,如果按合同施工,将增加将近30%的施工费用,遂与甲方协商但遭到拒绝。根据《合同法》的规定,乙公司若要行使其撤销权,必须在()之前向法
北京音乐学院是中国近代亚洲顶尖的音乐学府。()
婴儿对一点一滴的外部世界已经在头脑中建立起了某种“模型”,形成了对外部世界的某种看法。如果这种模型与外部世界相符合,他就感到满意,若是不符合,即所期望的结果没有出现,他就感到不满意。根据这段话的意思,假如一个婴儿对着他所熟悉的面孔微笑,则说明(
19世纪40年代以后,帝国主义势力一次又一次地发动对中国的侵略战争,妄图瓜分中国,灭亡中国。但是,帝国主义列强并没有能够实现它们的这一图谋,其根本原因是
设X,Y为两个随机变量,DCX)=4,D(Y)=9,相关系数为,则D(3X一2Y)=___________。
Wecanexperiencestressanytimewefeelwedon’thave【B1】______.Itcancomefromafeelingthatwecan’tdoanythingabout.
Ithasbeensaidthateveryonelivesbysellingsomething.Inthelightofthisstatement,teacherslivebyselling【C1】______,p
最新回复
(
0
)