首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)可导,且.求证:存在ξ∈(a,b)使得f’(ξ)=0.
设f(x)在(a,b)可导,且.求证:存在ξ∈(a,b)使得f’(ξ)=0.
admin
2016-10-20
9
问题
设f(x)在(a,b)可导,且
.求证:存在ξ∈(a,b)使得f’(ξ)=0.
选项
答案
(1)设g(x)=[*]则g(x)在[a,b]上连续,在(a,b)内可导,且g(a)=g(b),把罗尔定理用于g(x)即知存在ξ∈(a,b)使得 g’(ξ)=f’(ξ)=0. (2)若f(x)≡A([*]∈(a,b)),结论显然成立.否则,必[*]∈(a,b)使得f(x
0
)≠A.不妨设f(x
0
)<A,由极限的不等式性质知,[*]使得a+δ<b-δ且当x∈(a,a+δ]或x∈[b-δ,b)时都有f(x)>f(x
0
),于是f(x)在[a+δ,b-δ]有最小值,且必在(a+δ,b-δ)内某点ξ取到.由费马定理知f’(ξ)=0.对f(x
0
)>A的情形可类似证明.
解析
这是罗尔定理的推广.与罗尔定理比较,两者的不同在于本题中没有假设f(x)在[a,b]上连续.(1)的思路是利用f(x)在a和b单侧极限存在,补充定义f(x)在a和b两点的函数值就可转化为闭区间的情形.(2)的思路是利用极限的不等式性质把问题转化到(a,b)内的一个闭区间上讨论.(2)的好处是适用于证明(a,+∞),(-∞,6)或(-∞,+∞)上的相应问题.
转载请注明原文地址:https://kaotiyun.com/show/giT4777K
0
考研数学三
相关试题推荐
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).设P(5位顾客全部购买滚筒洗衣机)=0.0768,P(5位顾客全部购买直筒洗衣机)=0.0102,那么两类洗衣机都至少卖出一台的概率是多大?
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
A、 B、 C、 D、 D根据事件的并的定义,凡是出现“至少有一个”,均可由“事件的并”来表示,而事件“不发生”可由对立事件来表示,于是“A,B,C至少有一个不发生”等价于“A,B,C中至少有一个发生”,故答
写出下列各试验的样本空间:(1)掷两枚骰子,分别观察其出现的点数;(2)观察一支股票某日的价格(收盘价);(3)一人射靶三次,观察其中靶次数;(4)一袋中装有10个同型号的零件,其中3个合格7个不合格,每次从中随意取
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
用元素法推证:由平面图形0≤a≤x≤b,0≤y≤f(x)绕y轴旋转所得的旋转体的体积为
设函数f(x),g(x)具有二阶导数,且g"(x)
随机试题
根据管理需要和具体情况,企业可以设计哪些类型的辅助会计制度()
标志中国延续两千余年封建帝制覆灭的事件是
引起ITP病人出血的机制中,下列哪项不可能
某规模化猪场5~8周龄的保育仔猪出现发病,病猪发热、食欲减退;呼吸困难、咳嗽;关节肿胀、跛行、颤抖;共济失调、可视黏膜发绀,严重者死亡。临死前侧卧或四肢呈划水样。剖检可见多发性纤维素性或浆液性脑膜炎、胸膜炎、心肌炎、腹膜炎、关节炎、间质性肺炎、心包炎,形成
表面活性剂在药剂方面常用作
投资与消费虽然同属于现代社会中重要的经济活动,但具有自身的运动规律和作用机制,投资的一般特性包括:()。
订立合同应该( )。
信用证不准分批,又没有数量增减条款,则实际装运数量允许有5%的增减幅度。()
新中国成立以后,我国政府制定了“两弹一星”的战略决策,这一战略目标的实现是在()。
A、Aperformance.B、Apopgroup.C、Thenameofatheater.D、Thenameofadancer.B
最新回复
(
0
)