首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)可导,且.求证:存在ξ∈(a,b)使得f’(ξ)=0.
设f(x)在(a,b)可导,且.求证:存在ξ∈(a,b)使得f’(ξ)=0.
admin
2016-10-20
21
问题
设f(x)在(a,b)可导,且
.求证:存在ξ∈(a,b)使得f’(ξ)=0.
选项
答案
(1)设g(x)=[*]则g(x)在[a,b]上连续,在(a,b)内可导,且g(a)=g(b),把罗尔定理用于g(x)即知存在ξ∈(a,b)使得 g’(ξ)=f’(ξ)=0. (2)若f(x)≡A([*]∈(a,b)),结论显然成立.否则,必[*]∈(a,b)使得f(x
0
)≠A.不妨设f(x
0
)<A,由极限的不等式性质知,[*]使得a+δ<b-δ且当x∈(a,a+δ]或x∈[b-δ,b)时都有f(x)>f(x
0
),于是f(x)在[a+δ,b-δ]有最小值,且必在(a+δ,b-δ)内某点ξ取到.由费马定理知f’(ξ)=0.对f(x
0
)>A的情形可类似证明.
解析
这是罗尔定理的推广.与罗尔定理比较,两者的不同在于本题中没有假设f(x)在[a,b]上连续.(1)的思路是利用f(x)在a和b单侧极限存在,补充定义f(x)在a和b两点的函数值就可转化为闭区间的情形.(2)的思路是利用极限的不等式性质把问题转化到(a,b)内的一个闭区间上讨论.(2)的好处是适用于证明(a,+∞),(-∞,6)或(-∞,+∞)上的相应问题.
转载请注明原文地址:https://kaotiyun.com/show/giT4777K
0
考研数学三
相关试题推荐
血液试验ELISA(enzyme-linkedimmunosorbentassay,酶联免疫吸附测定)是现今检验艾滋病病毒的一种流行方法.假定ELISA试验能正确测出确实带有病毒的人中的95%存在艾滋病病毒,又把不带病毒的人中的1%不正确地识别为存
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
某公共汽车站每隔10min有一辆汽车到达,一位乘客到达汽车站的时间是任意的,求他等候时间不超过3min的概率.
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
求曲线x2+z2=10,y2+z2=10在点(1,1,3)处的切线和法平面方程.
求下列隐函数的指定偏导数:
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
设f(x)在区间[-a,a](a>0)上有二阶连续导数,f(0)=0证明在[-a,a]上至少存在一点η,使a3f"(η)=[*]
求方程karctanx-x=0不同实根的个数,其中k为参数.
随机试题
A、stomachB、headacheC、characterD、churchDch在church中的发音是[t∫],在其他三项中的发音是[k]。stomach胃;headache头疼;charater特征;church教堂。
脑血栓形成患者服用阿司匹林,目的是
乳剂制备时,先将乳化剂加入到水中再将油加入研磨成初乳,再加水稀释的方法为乳剂制备时,使植物油与含碱的水相发生皂化反应,生成新皂乳化剂随即进行乳化的方法为
善于调经止血、柔肝止痛的白芍炮制品是()。
工程项目的招标工作应在()阶段完成。
混凝土及抹灰面涂饰方法一般采用()等方法。
在应收管理模块初始化中,需要录入每笔()的往来业务单据。
(2015.河南)在对待师生关系方面,新课程中教师的教学行为强调()(常考)
阅读下面材料,选好角度,自拟题目,联系实际,写篇不少于600字的文章,除诗歌以外,文体不限。传说,北山愚公家门前有两座大山挡住了路,他下决心要把山平掉,河曲智叟笑他太傻,认为不可能。愚公回答:“我死了有儿子,儿子死了有孙子,子子孙孙是没有穷尽的。这两座山不
法律规定的公安机关在公益方面应当履行的责任义务包括救护、扶助、调解等方面。()
最新回复
(
0
)