首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,P=(α1,α2,α3)为3阶可逆矩阵,Q=(α1+α2,α2,α3).已知 PTAP= 则QTAQ=( ).
设A为3阶矩阵,P=(α1,α2,α3)为3阶可逆矩阵,Q=(α1+α2,α2,α3).已知 PTAP= 则QTAQ=( ).
admin
2018-06-27
42
问题
设A为3阶矩阵,P=(α
1
,α
2
,α
3
)为3阶可逆矩阵,Q=(α
1
+α
2
,α
2
,α
3
).已知
P
T
AP=
则Q
T
AQ=( ).
选项
A、
B、
C、
D、
答案
A
解析
显然关键是Q和P的关系.
由矩阵分解,有
Q=
,则Q
T
=
P
T
.
于是
Q
T
AQ=
P
T
AP
=Q
T
AQ=
转载请注明原文地址:https://kaotiyun.com/show/gik4777K
0
考研数学二
相关试题推荐
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=(α3,α2,α1,β一α4).求方程组Bx=αl—α2的通解.
下列矩阵中属于正定矩阵的是
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.求秩r(A+E).
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.写出与A相似的矩阵B;
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
随机试题
诊断慢性肾盂肾炎时,下列哪项不正确
有关热原检查法叙述不正确的是
A.最易出现癫痫发作B.出现内分泌功能障碍C.典型症状是遗忘综合征D.躁狂发作E.典型症状是幻视第三脑室附近脑瘤
受到高热、磨擦、冲击后能产生剧烈反应而发生大量气体和热量,引起爆炸的化学药品是具有强烈腐蚀性,甚至引起燃烧、爆炸和杀伤性药品是
两个卡诺热机的循环曲线如图2—1—4所示,一个工作在温度为T1与T4的两个热源之间,另一个工作在温度为T2与T3的两个热源之间,已知这两个循环曲线所包围的面积相等。由此可知,下列关于两个热机效率和吸热情况的叙述正确的是()。
下列关于建设项目环境影响评价的分类管理的说法,错误的是()。
顾客在购买一件产品时所感受到的产品效用与购买成本的比值,也就是他的所得与所付之比,即为()。
设方程组其中ai≠aj(i≠j),则下列说法中正确的().
Readthearticlebelowaboutthebusiness’socialresponsibilityandthequestions.Foreachquestion(13-18),markoneletter(
Therearemoredrugsdispensedforpainthanforanyotherdiseaseonthisplanet.Drugcompaniesenjoyearninghugeprofitsf
最新回复
(
0
)