首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T, )如果齐次线性方程组Ax=0与BBx=0有非零公共解
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T, )如果齐次线性方程组Ax=0与BBx=0有非零公共解
admin
2014-02-05
45
问题
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η
1
=(1,3,0,2)
T
,η
2
=(1,2,一1,3)
T
,又知齐次方程组Bx=0的基础解系是β
1
=(1,1,2,1)
T
,β
2
=(0,一3,1,α)
T
,
)如果齐次线性方程组Ax=0与BBx=0有非零公共解,求a的值并求公共解.
选项
答案
设齐次线性方程组Ax=0与Bx=0的非零公共解为y,则y既可由η
1
,η
2
线性表出,也可由β
1
,β
2
线性表出,故可设y=x
1
η
1
+x
2
η
2
=一x
3
β
1
一x
4
β
2
,于是x
1
η
1
+x
2
η
2
+x
3
β
1
+x
4
β
2
=0.对(η
1
,η
2
,β
1
,β
2
)作初等行变换,有[*]y≠0[*]x
1
,x
2
,x
3
,x
4
不全为0[*]秩r(η
1
,η
2
,β
1
,β
2
)<4[*]a=0.当a=0时.解出x
4
=t,x
3
=一t,x
2
=一t,x
1
=2t.因此Ax=0与Bx=0的公共解为y=2tη
1
一tη
2
=t(1,4,1,1)
T
,其中t为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/bT34777K
0
考研数学二
相关试题推荐
(1996年)设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一11)求f’(x);2)讨论f’(x)在(一∞,+∞)上的连续性.
(2018年)设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则()
设f(x)为某分布的概率密度函数,f(1+x)=f(1—x),∫02f(x)dx=0.6,则P{X<0}=()
(14年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的【】
[2009年]设α=[1,1,1]T,β=[1,0,k]T,若矩阵αβT相似于则k=_________.
设A为二阶矩阵,P=(a,Aa),其中a是非零向量且不是A的特征向量.证明P为可逆矩阵;
(1996年)设f(x)在区间[0,1]上可微,且满足条件,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
过原点(0,0)向曲线Γ:作切线L,记切点为(x0,y0),由切线L、曲线Γ以及x轴围成的平面图形为D.试求切点(x0,y0)的数值,并写出切线L的方程;
求二元函数F(x,y)=xye-(x2+y2)在区域D={(x,y)︱x≥0,y≥0}上的最大值与最小值。
设k>0,f(x)=kx3-x,则f(x)在上的最大值为()
随机试题
下列方剂中,柴胡用量宜小的是
下列选项中不能获得专利权的发明创造是()
You’realone,drivingonadesertedstretchofhighway.Suddenlyyouareenclosedbycloudsofsmokeandsteamastheengine-tem
麻醉方式首选如选硬膜外麻醉,给药后,患者主诉头晕,耳鸣,口唇麻木,最可能的诊断为
A.槐花B.地榆C.侧柏叶D.茜草E.大蓟功效凉血止血,散瘀消痈的中药是
用人单位不能克扣劳动者的工资,但是在下列情况下扣除劳动者部分工资不属于克扣工资,下列说法错误的是()。
布鲁纳认为“学习一门学科,看来包含着三个差不多同时发生的过程”。这三个过程是()
小刚,10周岁,因期末考试取得了好成绩,姑姑送给他一台价值人民币五千多元的iphone6,后来小刚为了购买自己需要的书和学习用品,将手机以六千元人民币的价格卖给急需这台手机的梁某(25周岁)。以下说法正确的是()。
我国南方和北方的地理分界线是()。
下列A市的指标中,2017年同比增量最多的是:
最新回复
(
0
)